Contents

1 **Introduction** ... 1

2 **Extended Space-Times, Causal Structure and Penrose Diagrams** 3
 2.1 Introduction and a Short History of Black Holes 3
 2.2 The Kruskal Extension of Schwarzschild Space-Time 10
 2.2.1 Analysis of the Rindler Space-Time 10
 2.2.2 Applying the Same Procedure to the Schwarzschild Metric 14
 2.2.3 A First Analysis of Kruskal Space-Time 17
 2.3 Basic Concepts about Future, Past and Causality 19
 2.3.1 The Light-Cone .. 20
 2.3.2 Future and Past of Events and Regions 22
 2.4 Conformal Mappings and the Causal Boundary of Space-Time ... 28
 2.4.1 Conformal Mapping of Minkowski Space into the Einstein Static Universe 29
 2.4.2 Asymptotic Flatness 36
 2.5 The Causal Boundary of Kruskal Space-Time 37
 References ... 42

3 **Rotating Black Holes and Thermodynamics** 43
 3.1 Introduction ... 43
 3.2 The Kerr-Newman Metric 43
 3.2.1 Riemann and Ricci Curvatures of the Kerr-Newman Metric 45
 3.3 The Static Limit in Kerr-Newman Space-Time 49
 3.4 The Horizon and the Ergosphere 53
 3.5 Geodesics of the Kerr Metric 55
 3.5.1 The Three Manifest Integrals, \mathcal{E}, L and μ 56
 3.5.2 The Hamilton-Jacobi Equation and the Carter Constant ... 58
 3.5.3 Reduction to First Order Equations 60
 3.5.4 The Exact Solution of the Schwarzschild Orbit Equation as an Application 62
 3.5.5 About Explicit Kerr Geodesics 65
3.6 The Kerr Black Hole and the Laws of Thermodynamics 65
 3.6.1 The Penrose Mechanism ... 67
 3.6.2 The Bekenstein Hawking Entropy and Hawking Radiation 69
References ... 70

4 Cosmology: A Historical Outline from Kant to WMAP and PLANCK 71
 4.1 Historical Introduction to Modern Cosmology 71
 4.2 The Universe Is a Dynamical System 71
 4.3 Expansion of the Universe ... 72
 4.3.1 Why the Night is Dark and Olbers Paradox 73
 4.3.2 Hubble, the Galaxies and the Great Debate 73
 4.3.3 The Discovery of Hubble’s Law 81
 4.3.4 The Big Bang .. 84
 4.4 The Cosmological Principle ... 86
 4.5 The Cosmic Background Radiation 91
 4.6 The New Scenario of the Inflationary Universe 97
 4.7 The End of the Second Millennium and the Dawn of the Third
 Bring Great News in Cosmology 99
References ...105

5 Cosmology and General Relativity: Mathematical Description
of the Universe ..107
 5.1 Introduction ..107
 5.2 Mathematical Interlude: Isometries and the Geometry of Coset
 Manifolds ..108
 5.2.1 Isometries and Killing Vector Fields108
 5.2.2 Coset Manifolds ..109
 5.2.3 The Geometry of Coset Manifolds114
 5.3 Homogeneity Without Isotropy: What Might Happen125
 5.3.1 Bianchi Spaces and Kasner Metrics125
 5.3.2 A Toy Example of Cosmic Billiard with a Bianchi II
 Space-Time ...130
 5.3.3 Einstein Equation and Matter for This Billiard132
 5.3.4 The Same Billiard with Some Matter Content137
 5.3.5 Three-Space Geometry of This Toy Model141
 5.4 The Standard Cosmological Model: Isotropic and Homogeneous
 Metrics ...146
 5.4.1 Viewing the Coset Manifolds as Group Manifolds149
 5.5 Friedman Equations for the Scale Factor and the Equation of State
 5.5.1 Proof of the Cosmological Red-Shift152
 5.5.2 Solution of the Cosmological Differential Equations
 for Dust and Radiation Without a Cosmological Constant ..154
 5.5.3 Embedding Cosmologies into de Sitter Space159
 5.6 General Consequences of Friedman Equations162
 5.6.1 Particle Horizon ...166
 5.6.2 Event Horizon ..168
 5.6.3 Red-Shift Distances ..171
5.7 Conceptual Problems of the Standard Cosmological Model . . . 172
5.8 Cosmic Evolution with a Scalar Field: The Basis for Inflation . . 174
5.8.1 de Sitter Solution 176
5.8.2 Slow-Rolling Approximate Solutions 177
5.9 Primordial Perturbations of the Cosmological Metric and of the Inflaton ... 187
5.9.1 The Conformal Frame 187
5.9.2 Deriving the Equations for the Perturbation 188
5.9.3 Quantization of the Scalar Degree of Freedom 195
5.9.4 Calculation of the Power Spectrum in the Two Regimes . . . 198
5.10 The Anisotropies of the Cosmic Microwave Background 203
5.10.1 The Sachs-Wolfe Effect 203
5.10.2 The Two-Point Temperature Correlation Function 206
5.10.3 Conclusive Remarks on CMB Anisotropies 208
References .. 209

6 Supergravity: The Principles .. 211
6.1 Historical Outline and Introduction 211
6.1.1 Fermionic Strings and the Birth of Supersymmetry 215
6.1.2 Supersymmetry .. 218
6.1.3 Supergravity 221
6.2 Algebro-Geometric Structure of Supergravity 223
6.3 Free Differential Algebras 227
6.3.1 Chevalley Cohomology 228
6.3.2 General Structure of FDAs and Sullivan’s Theorems 230
6.4 The Super FDA of M Theory and Its Cohomological Structure 233
6.4.1 The Minimal FDA of M-Theory and Cohomology ... 235
6.4.2 FDA Equivalence with Larger (Super) Lie Algebras 236
6.5 The Principle of Rheonomy 239
6.5.1 The Flow Chart for the Construction of a Supergravity Theory ... 242
6.5.2 Construction of $D = 11$ Supergravity, Alias M-Theory 243
6.6 Summary of Supergravities 246
6.7 Type IIA Supergravity in $D = 10$ 248
6.7.1 Rheonomic Parameterizations of the Type IIA Curvatures in the String Frame 251
6.7.2 Field Equations of Type IIA Supergravity in the String Frame ... 253
6.8 Type IIB Supergravity .. 254
6.8.1 The $\text{SU}(1,1)/\text{U}(1) \sim \text{SL}(2, \mathbb{R})/\text{O}(2)$ Coset ... 254
6.8.2 The Free Differential Algebra, the Supergravity Fields and the Curvatures 256
6.8.3 The Bosonic Field Equations and the Standard Form of the Bosonic Action 259
6.9 About Solutions ... 261
References .. 261
7 The Branes: Three Viewpoints

7.1 Introduction and Conceptual Outline

7.2 \(p \)-Branes as World Volume Gauge-Theories

7.3 From 2nd to 1st Order and the Rheonomy Setup for \(\kappa \) Supersymmetry

7.3.1 Nambu-Goto, Born-Infeld and Polyakov Kinetic Actions for \(p \)-Branes

7.3.2 \(\kappa \)-Supersymmetry and the Example of the M2-Brane

7.3.3 With \(Dp \)-Branes We Have a Problem: The World-Volume Gauge Field \(A^1 \)

7.4 The New First Order Formalism

7.4.1 An Alternative to the Polyakov Action for \(p \)-Branes

7.4.2 Inclusion of a World-Volume Gauge Field and the Born-Infeld Action in First Order Formalism

7.4.3 Explicit Solution of the Equations for the Auxiliary Fields for \(F \) and \(h^{-1} \)

7.5 The \(D3 \)-Brane Example and \(\kappa \)-Supersymmetry

7.5.1 \(\kappa \)-Supersymmetry

7.6 The \(D3 \)-Brane: Summary

7.7 Supergravity \(p \)-Branes as Classical Solitons: General Aspects

7.8 The Near Brane Geometry, the Dual Frame and the AdS/CFT Correspondence

7.9 Domain Walls in Diverse Space-Time Dimensions

7.9.1 The Randall Sundrum Mechanism

7.9.2 The Conformal Gauge for Domain Walls

7.10 Conclusion on This Brane Bestiary

References

8 Supergravity: A Bestiary in Diverse Dimensions

8.1 Introduction

8.2 Supergravity and Homogeneous Scalar Manifolds G/H

8.2.1 How to Determine the Scalar Cosets G/H of Supergravities from Supersymmetry

8.2.2 The Scalar Cosets of \(D = 4 \) Supergravities

8.2.3 Scalar Manifolds of Maximal Supergravities in Diverse Dimensions

8.3 Duality Symmetries in Even Dimensions

8.3.1 The Kinetic Matrix \(\mathcal{N} \) and Symplectic Embeddings

8.3.2 Symplectic Embeddings in General

8.4 General Form of \(D = 4 \) (Ungauged) Supergravity

8.5 Summary of Special Kähler Geometry

8.5.1 Hodge-Kähler Manifolds

8.5.2 Connection on the Line Bundle

8.5.3 Special Kähler Manifolds

8.5.4 The Vector Kinetic Matrix \(\mathcal{N}_{\Lambda \Sigma} \) in Special Geometry
8.6 Supergravities in Five Dimension and More Scalar Geometries
8.6.1 Very Special Geometry
8.6.2 The Very Special Geometry of the $\text{SO}(1, 1) \times \text{SO}(1, n)/\text{SO}(n)$ Manifold
8.6.3 Quaternionic Geometry
8.6.4 Quaternionic, Versus HyperKähler Manifolds
8.7 $\mathcal{N} = 2$, $D = 5$ Supergravity Before Gauging
References

9 Supergravity: An Anthology of Solutions
9.1 Introduction
9.2 Black Holes Once Again
9.2.1 The σ-Model Approach to Spherical Black Holes
9.2.2 The Oxidation Rules
9.2.3 General Properties of the $d = 4$ Metric
9.2.4 Attractor Mechanism, the Entropy and Other Special Geometry Invariants
9.2.5 Critical Points of the Geodesic Potential and Attractors
9.2.6 The $\mathcal{N} = 2$ Supergravity S^3-Model
9.2.7 Fixed Scalars at BPS Attractor Points: The S^3 Explicit Example
9.2.8 The Attraction Mechanism Illustrated with an Exact Non-BPS Solution
9.2.9 Resuming the Discussion of Critical Points
9.2.10 An Example of a Small Black Hole
9.2.11 Behavior of the Riemann Tensor in Regular Solutions
9.3 Flux Vacua of M-Theory and Manifolds of Restricted Holonomy
9.3.1 The Holonomy Tensor from $D = 11$ Bianchi Identities
9.3.2 Flux Compactifications of M-Theory on $\text{AdS}_4 \times M_7$ Backgrounds
9.3.3 M-Theory Field Equations and 7-Manifolds of Weak G_2 Holonomy i.e. Englert 7-Manifolds
9.3.4 The $\text{SO}(8)$ Spinor Bundle and the Holonomy Tensor
9.3.5 The Well Adapted Basis of Gamma Matrices
9.3.6 The $\mathfrak{so}(8)$-Connection and the Holonomy Tensor
9.3.7 The Holonomy Tensor and Superspace
9.3.8 Gauged Maurer Cartan 1-Forms of $\text{OSp}(8|4)$
9.3.9 Killing Spinors of the AdS_4 Manifold
9.3.10 Supergauge Completion in Mini Superspace
9.3.11 The 3-Form
9.4 Flux Compactifications of Type IIA Supergravity on $\text{AdS}_4 \times \mathbb{P}^3$
9.4.1 Maurer Cartan Forms of $\text{OSp}(6|4)$
9.4.2 Explicit Construction of the \mathbb{P}^3 Geometry
9.4.3 The Compactification Ansatz
9.4.4 Killing Spinors on \mathbb{P}^3
Gravity, a Geometrical Course
Volume 2: Black Holes, Cosmology and Introduction to Supergravity
Frè, P.G.
2013, XX, 452 p., Hardcover
ISBN: 978-94-007-5442-3