Contents

1 The Plasma State: Definition and Orders of Magnitude of Principal Quantities .. 1
 1.1 Definition and essential nature of plasma 1
 1.1.1 A plasma behaves as a collective medium 1
 1.1.2 A plasma is a macroscopically neutral medium 2
 1.1.3 First examples of plasmas 3
 1.2 Areas of research and applications (examples) 5
 1.2.1 Controlled thermonuclear fusion 5
 1.2.2 Astrophysics and environmental physics 7
 1.2.3 Laser pumping 8
 1.2.4 Plasma chemistry 9
 1.2.5 Surface treatment 10
 1.2.6 Sterilisation of medical devices 11
 1.2.7 Elemental analysis (analytical chemistry) 12
 1.2.8 Lighting .. 13
 1.2.9 Plasma display panels 13
 1.2.10 Ion sources ... 14
 1.2.11 Ion propulsion thrusters 14
 1.2.12 Further applications 15
 1.3 Different types of laboratory plasmas 15
 1.3.1 Discharges with continuous current or alternative
current at low frequency 15
 1.3.2 High frequency (HF) discharges 16
 1.3.3 Laser induced discharges 16
 1.4 Electron density and temperature of a plasma 17
 1.4.1 Range of electron density values in a plasma 17
 1.4.2 Definition of plasma “temperature” and the concept
of thermodynamic equilibrium (TE) 17
 1.4.3 Different levels of departure from complete
thermodynamic equilibrium 21
 1.5 Natural oscillation frequency of electrons in a plasma ... 23

xi
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5.1 Origin and description of the phenomenon</td>
<td>23</td>
</tr>
<tr>
<td>1.5.2 Calculation of the electron plasma frequency</td>
<td>24</td>
</tr>
<tr>
<td>1.6 Debye length: effect of screening in the plasma</td>
<td>27</td>
</tr>
<tr>
<td>1.6.1 Description of the phenomenon</td>
<td>27</td>
</tr>
<tr>
<td>1.6.2 Calculation of the potential exerted by an ion in a two-temperature plasma: definition of the Debye length</td>
<td>28</td>
</tr>
<tr>
<td>1.7 Collision phenomena in plasmas</td>
<td>32</td>
</tr>
<tr>
<td>1.7.1 Types of collision</td>
<td>33</td>
</tr>
<tr>
<td>1.7.2 Momentum exchange and energy transfer during a collision between two particles</td>
<td>36</td>
</tr>
<tr>
<td>1.7.3 Microscopic differential cross-section</td>
<td>44</td>
</tr>
<tr>
<td>1.7.4 Total (integrated) microscopic cross-section</td>
<td>48</td>
</tr>
<tr>
<td>1.7.5 Total macroscopic cross-section</td>
<td>49</td>
</tr>
<tr>
<td>1.7.6 Expression for the temperature of a plasma in electron-volt</td>
<td>53</td>
</tr>
<tr>
<td>1.7.7 Collision frequency and mean free path between two collisions</td>
<td>54</td>
</tr>
<tr>
<td>1.7.8 Average collision frequency and mean free path</td>
<td>56</td>
</tr>
<tr>
<td>1.7.9 Examples of collision cross-sections</td>
<td>58</td>
</tr>
<tr>
<td>1.8 Mechanisms for creation and loss of charged particles in a plasma and their conservation equation</td>
<td>64</td>
</tr>
<tr>
<td>1.8.1 Loss mechanisms</td>
<td>64</td>
</tr>
<tr>
<td>1.8.2 Creation mechanisms</td>
<td>66</td>
</tr>
<tr>
<td>1.8.3 Conservation equation for charged particles</td>
<td>67</td>
</tr>
<tr>
<td>Problems</td>
<td>68</td>
</tr>
</tbody>
</table>

2 Individual Motion of a Charged Particle in Electric and Magnetic Fields

2.1 The general equation of motion of a charged particle in \(E \)
and \(B \) fields and properties of that equation | 103 |
2.1.1 The equation of motion | 103 |
2.1.2 The kinetic energy equation | 104 |
2.2 Analysis of particular cases of \(E \) and \(B \) | 104 |
2.2.1 Electric field only \((B = 0) \) | 105 |
2.2.2 Uniform static magnetic field | 113 |
2.2.3 Magnetic field either (slightly) non uniform or (slightly) varying in time | 135 |
Problems | 155 |

3 Hydrodynamic Description of a Plasma

3.1 Fundamental aspects of the Boltzmann equation | 205 |
3.1.1 Formal derivation of the Boltzmann equation | 205 |
3.1.2 Approximation to the Boltzmann elastic collision term: relaxation of the distribution function towards an isotropic state | 208 |
3.1.3 Two classical methods to find an analytic solution to the Boltzmann equation .. 210
3.2 Velocity distribution functions and the notion of correlation between particles .. 211
3.2.1 Probability density of finding a particle in phase space 211
3.2.2 Single-point distribution function (the case of correlated particles) ... 212
3.2.3 Single-point distribution function (uncorrelated particles) ... 213
3.2.4 Two-point distribution function (correlated particles) 213
3.2.5 Two-point distribution function (uncorrelated particles) ... 214
3.2.6 N-point distribution functions .. 215
3.3 Distribution functions and hydrodynamic quantities 215
3.4 Kinetic and hydrodynamic conductivities of electrons in a plasma in the presence of a HF electromagnetic field 218
3.4.1 Kinetic form of the electrical conductivity due to electrons in an HF field .. 219
3.4.2 Hydrodynamic form of the electrical conductivity due to electrons in an HF field 221
3.5 Transport equations .. 224
3.5.1 The continuity equation (1st hydrodynamic moment, of zero order in \(w \)) .. 226
3.5.2 The momentum transport equation (2nd hydrodynamic moment, 1st order in \(w \)) 227
3.5.3 Moment equations of second order in \(w \) 234
3.5.4 Higher order moment equations 239
3.6 Closure of the transport equations 240
3.7 The Lorentz electron plasma model 243
3.8 Diffusion and mobility of charged particles 245
3.8.1 The concepts of diffusion and mobility 245
3.8.2 Solution of the Langevin equation with zero total derivative ... 246
3.9 Normal modes of diffusion and spatial density distribution of charged particles 253
3.9.1 Concept of normal modes of diffusion: study of a time varying post-discharge 255
3.9.2 Spatial distribution of charged particle density in the stationary diffusion regime 259
3.10 The ambipolar diffusion regime 261
3.10.1 Assumptions required for a completely analytic description of the ambipolar diffusion regime 262
3.10.2 Equations governing the ambipolar diffusion regime and the transition from the free diffusion to the ambipolar regime ... 263
3.10.3 The value of the space-charge electric field intensity . 265
3.10.4 The expression for the charge density ρ_0 on the axis: limits to the validity of the analytic calculation 267
3.10.5 Necessary conditions for a discharge to be in the ambipolar regime .. 268
3.11 Ambipolar diffusion in a static magnetic field 271
3.12 Diffusion regime or free fall regime 274
3.13 Electron temperature of a long plasma column governed by ambipolar diffusion: scaling law $T_e(pR)$ 275
3.13.1 Assumptions of the model 276
3.13.2 Derivation of the relation $T_e(p_0R)$ 276
3.14 Formation and nature of sheaths at the plasma-wall interface: particle flux to the walls and the Bohm criterion ... 282
3.14.1 Positive wall-potential with respect to the plasma potential: electron sheath 283
3.14.2 Negative wall-potential with respect to the plasma potential: ion sheath .. 284
3.14.3 Floating potential .. 288
Problems ... 288

4 **Introduction to the Physics of HF Discharges** 337
4.1 Preamble ... 337
4.2 Power transfer from the electric field to the discharge 339
 4.2.1 Direct current discharges 339
 4.2.2 HF discharges .. 343
 4.2.3 HF discharges in the presence of a static magnetic field 345
 4.2.4 Variation of the value of θ as a function of \bar{n}_e for different plasma conditions 352
4.3 Influence of the frequency of the HF field on some plasma properties and on particular processes 354
 4.3.1 Posing of the problem ... 355
 4.3.2 The EEDF in the non-stationary regime 356
 4.3.3 EEDF in the stationary regime 358
 4.3.4 Three limit cases of the influence of ω on a stationary EEDF .. 360
 4.3.5 Influence of ω on the power θ 362
 4.3.6 Density of species produced per second for a constant absorbed power density: energy efficiency of the discharge .. 363
 4.3.7 Experimental and modelling results 364
 4.3.8 Summary of the properties of low-pressure HF plasmas 368
4.4 High-pressure HF sustained plasmas 369
 4.4.1 Experimental observation of contraction and filamentation at atmospheric pressure 370
 4.4.2 Modelling contraction at atmospheric pressure 376
4.4.3 Validation of the basic assumptions of contraction at atmospheric pressure, using a self-consistent model ... 379
4.4.4 Kinetics of expanded discharges at atmospheric pressure as a result of adding traces of rare gases with a lower ionisation potential 382
4.4.5 Summary of the properties of high-pressure HF plasmas .. 385

I Properties of the Maxwell-Boltzman Velocity Distribution ... 387

II The Complete Saha Equation ... 393

III Partial Local Thermodynamic Equilibrium .. 395

IV Representation of Binary Collisions in the Centre of Mass and Laboratory Frames 397

V Limiting the Range of the Coulomb Collisional Interactions: the Coulomb Logarithm 399

VI Stepwise Ionisation ... 413

VII Basic Notions of Tensors ... 417

VIII Operations on Tensors ... 421

IX Orientation of $w_{2\perp}$ in the Reference Triad with Cartesian Axes $(E_{0\perp} \wedge B, E_{0\perp}, B)$... 429

X Force Acting on a Charged Particle in the Direction of a Magnetic Field B Weakly Non-uniform Axially .. 431

XI The Magnetic Moment ... 433

XII Drift Velocity w_d of a Charged Particle Subjected to an Arbitrary Force F_d in a Field B: the Magnetic Field Drift ... 435

XIII Magnetic-Field Drift Velocity w_{dm} in the Frenet Frame Associated with the Lines of Force of a Magnetic Field with Weak Curvature 437

XIV Spherical Harmonics ... 441

XV Expressions for the Terms M and R in the Kinetic Pressure Transport Equation 443
XVI	Closure of the Hydrodynamic Transport Equation for Kinetic Pressure in the Case of Adiabatic Compression	445
XVII	Complementary Calculations to the Expression for $T_e(pR)$ (Sect. 3.13)	447
XVIII	Propagation of an Electromagnetic Plane Wave in a Plasma and the Skin Depth	451
XIX	Surface-Wave Plasmas (SWP)	455
XX	Useful Integrals and Expressions for the Differential Operators in Various Coordinate Systems	459
References		465
Recommended Reading		467
Index		471
Physics of Collisional Plasmas
Introduction to High-Frequency Discharges
Moisan, M.; Pelletier, J.
2012, XXIV, 480 p., Hardcover