Contents

1 Introduction ... 1

Part I Stable Isotopes

2 Isotope Geochemistry of Natural Waters 11
 2.1 Some Properties of Waters and Solutions 11
 2.1.1 The Notion of Activity and the Activity Coefficient 13
 2.1.2 The Relationship between Solvent and Solute Activity 14
 2.2 Water Vapor Pressure over the Water and Solution 15
 2.3 Physicochemical Foundations of Isotope Separation 17
 2.4 Hydrogen and Oxygen Isotope Separation at Phase Transition of Water .. 26
 2.5 Relationship Between the Isotope Reaction Change Constant and the Fractionation Factor ... 30
 2.6 Hydrogen and Oxygen Isotope Fractionation at Interaction Between Water and Gases and Rocks 33
 2.7 Isotope Geothermometry .. 35

3 Isotopic Composition of Ocean Water 49
 3.1 Distribution of Hydrogen and Oxygen Isotopes and Water Dynamics ... 49
 3.2 Effect of Evaporation and Vertical Water Exchange 54
 3.3 Dynamics of the Ocean Water 57
 3.4 Isotopic Composition of Ocean Water in the Past 62

4 Isotopic Composition of Atmospheric Moisture 67
 4.1 Hydrogen and Oxygen Isotope Fractionation in the Hydrological Cycle ... 67
 4.2 Isotopic Balance in the Global Hydrologic Cycle at Evaporation and Condensation of Water 79
 4.3 Isotopic Composition of Atmospheric Water in the Past 86
5 Isotopic Composition of Surface Continental Waters 95
 5.1 Isotopic Balance of the Continental Waters 95
 5.2 Isotopic Composition of the River and Lake Water 101
 5.3 Isotopic Composition of Water in Evaporating Basins 107

6 Isotopic Composition of Water in the Unsaturated
 and Saturated Zones ... 115
 6.1 Relationship Between Surface and Ground Water 116
 6.2 Groundwater Recharge at Present Time 118
 6.3 Groundwater Recharge in the Past 118
 6.4 Identification of Area of Groundwater Recharge 119
 6.5 Relationship Between Aquifers 123
 6.6 Mixing Proportions of Groundwater of Different Genesis 125
 6.7 Groundwater Residence Time in an Aquifer 126
 6.8 Relationship of Waters in Conjugate Hydrologic Basins 127

7 Isotopic Composition of Formation Waters 129
 7.1 Relationship Between Hydrogen and Oxygen Isotopes
 in Formation Waters ... 129
 7.2 Isotopic Composition of Formation Water in Sedimentary Basins . 134

8 Hydrogen and Oxygen Isotopic Composition of Sedimentary
 Rocks of Marine Genesis and Implications for Paleothermometry ... 155
 8.1 Isotopic Composition of Sediments and Pore Water 155
 8.2 Paleothermometry Based on the Isotopic Composition of Cherts ... 161
 8.3 Paleothermometry Based on the Isotopic Composition
 of Carbonate Rocks .. 169
 8.4 Isotopic Composition of Evaporates 175

9 Hydrogen and Oxygen Isotopic Composition of Groundwater
 in Volcanic Regions ... 179
 9.1 Use of Isotopes in Studying the Origin of Thermal Water 179
 9.2 Isotopic Geothermometers 192

10 Hydrogen and Oxygen Isotopic Composition of Minerals
 of Magmatic and Metamorphic Rocks and Fluid Inclusions 195
 10.1 Role of Water in Hydrothermal Alteration of the Rocks
 and Minerals .. 195
 10.2 Meteoric Water in the Processes of Hydrothermal Formation
 of Minerals .. 201

11 Other Stable Isotopes in the Hydrosphere 205
 11.1 Stable Isotopes of Carbon 205
 11.2 Stable Isotopes of Sulfur 209
Part II Cosmogenic Radioisotopes

12 Origin and Production of Cosmogenic Radioisotopes 215
 12.1 Composition of Cosmic Radiation in the Earth’s Atmosphere 215
 12.2 Composition and Steady-state Abundances of Cosmogenic
 Radioisotopes in the Outer Shells of the Earth 218
 12.3 Distribution of Cosmogenic Radioisotopes in the Exchange
 Reservoirs .. 223

13 Tritium in Natural Waters .. 227
 13.1 Properties of Tritium and Sources of Its Occurrence 227
 13.2 Global Circulation of Tritium Water 235
 13.2.1 Tritium in Atmospheric Hydrogen and Methane 236
 13.2.2 Tritium in Atmospheric Water Vapor 239
 13.2.3 Tritium in Precipitation 241
 13.2.4 Global Distribution of Tritium 249
 13.3 Regional Distribution of Tritium in Precipitation 253
 13.3.1 The North American Continent 254
 13.3.2 The European–Asiatic Continent 254
 13.3.3 The African Continent 258
 13.3.4 The South American Continent 261
 13.3.5 Australia and New Zealand 262
 13.3.6 Antarctic .. 263
 13.3.7 Tritium in Precipitation over the Oceans 264
 13.4 Formation of Tritium Concentrations in the Atmosphere 264
 13.5 Tritium in Ocean Waters ... 270
 13.6 Tritium in Continental Surface Waters 277
 13.6.1 Tritium Content in River Water 277
 13.6.2 Tritium in Lakes and Reservoirs 285
 13.7 Tritium in Groundwaters .. 289
 13.8 Dating by Tritium ... 292
 13.8.1 Piston Flow Model .. 292
 13.8.2 Dispersive Model ... 293
 13.8.3 Complete Mixing Model 294
 13.8.4 Symmetrical Binomial Age Distribution Model 296
 13.8.5 Model of Mixing Waters of Different Ages 297
 13.8.6 Complicated Model .. 298

14 Radiocarbon in Natural Waters .. 301
 14.1 Origin and Distribution of Radiocarbon in the Nature 301
 14.2 Natural Variations of Radiocarbon in the Atmosphere
 and Biosphere .. 306
 14.3 Natural Radiocarbon in the Oceans 312
 14.4 Technogenic Radiocarbon in the Atmosphere and Oceans 316
 14.5 Forecast of Carbon Dioxide Increase in the Atmosphere 327
 14.6 Principles of Radiocarbon Dating 331
14.7 Radiocarbon Dating of Groundwater 335
14.8 Formation of Chemical and Isotonic Composition of Groundwater’s Carbonate System 339
14.9 Corrections in Groundwater Dating by Radiocarbon 343

15 The Other Cosmogenic Isotopes in Natural Waters 361
15.1 Origin of Other Cosmogenic Radioisotopes in the Atmosphere 361
15.2 Distribution of Other Cosmogenic Isotopes in the Hydrosphere 363
15.3 Use of Radioisotopes as Tracers in the Hydrological Cycle 365

Part III Radiogenic Isotopes

16 Production and Distribution of Radiogenic Isotopes 377
16.1 Geochemistry of Radiogenic Elements 378
16.1.1 Uranium .. 378
16.1.2 Thorium .. 382
16.1.3 Protactinium .. 383
16.1.4 Actinium ... 384
16.1.5 Radium .. 384
16.1.6 Radon .. 385
16.2 Separation of Radiogenic Elements and Isotopes 386
16.2.1 Separation of Uranium Isotopes 388
16.2.2 Separation of Thorium Isotopes 389
16.2.3 Separation of Radium Isotopes 390
16.3 Distribution of Radiogenic Elements in Natural Waters 391
16.3.1 Uranium Isotopes in Natural Waters 392
16.3.2 Thorium Isotopes in Natural Waters 398

17 Dating of Surface Water, Groundwater, and Sediments 407
17.1 Dating of Closed Reservoirs 407
17.2 Dating of Groundwater 411
17.3 Dating of Sediments .. 413
17.3.1 Uranium-Uranium Method 413
17.3.2 Uranium-Ionium Method 415
17.4 Isotopes of Radiogenic Elements as Indicators of Hydrologic Processes 418

Part IV Applications

18 Applications to the Problems of Dynamics of Natural Waters 427
18.1 Dynamics of Moisture in the Atmosphere 427
18.2 Mixing of River and Sea Waters in Estuaries 436
18.3 Water Exchange in the River Basins, Lakes, and Reservoirs 446
18.4 Water Dynamics in Unsaturated and Saturated Zone 452
18.5 Recharge and Discharge of Groundwater 456
18.6 Relationship of Aquifers 462
18.7 Separation of Recharged Water of Different Genesis in Mining 469
18.8	Determination of Radiocarbon Age of Groundwater	470
18.9	Determination of Flow Velocity and Direction in Regional Scale	478
18.10	Paleoclimatic and Paleohydrogeologic Studies	480

19 Paleohydrology of the Aral-Caspian Basin 491

19.1 Formulation of the Problem .. 491

19.2 General Description of Study in the Caspian Sea 492
 19.2.1 Laboratory Data of Core Analysis 493
 19.2.2 Structure of Core Cross Section 495
 19.2.3 Carbonate Mineral Content of Sediments 495
 19.2.4 Ion-Salt Composition of Water Extracts 497
 19.2.5 Radiocarbon Age of Sediments 498
 19.2.6 Isotope Record in Carbonates 498

19.3 Interpretation of Paleoclimatic Events 504
 19.3.1 Rate of Sedimentation and Change in the Regime of the Northern and Southern Rivers 504
 19.3.2 Variations in the Sea Level 506

19.4 Study of Water Regime in the Aral Sea 508

19.5 Interpretation of Bottom Sediments 512
 19.5.1 Kara-Bogaz-Gol Gulf .. 512
 19.5.2 Lake Issyk-Kul ... 515
 19.5.3 Aral Sea .. 518

19.6 Results and Conclusions .. 521

20 The Nature and Mechanism of the Earth Shell Separation and Origin of Hydrosphere .. 525

20.1 Existing Approaches to the Problem Solution 525

20.2 Separation of Hydrogen and Oxygen Isotopes in Natural Objects .. 527

20.3 Evidence from Carbon and Sulfur Isotopes 539

20.4 Chemical Differentiation of Proto-Planetary Substance 545

20.5 Recent Results of Study of the Earth Gravitational Field by the Satellites .. 557

20.6 The Nature and Mechanism of the Earth Shell Separation 558

20.7 Physical Meaning of Archimedes’ and Coriolis’ Forces 560

20.8 Self-Similarity Principle and Radial Component of Nonuniform Sphere .. 561

20.9 Charges-like Motion of Nonuniformities and Tangential Component of the Force Function 562

20.10 Differentiation of the Substances with Respect to Density and Condition for the Planet and the Satellite Separation 563

20.11 The Third Kepler’s Law as a Kinematics Basis for the Solar System Bodies Creation Problem Solution 571

20.12 Conclusion .. 576

References ... 579

Index ... 621
Isotopes of the Earth's Hydrosphere
Ferronsky, V.I.; Polyakov, V.A.
2012, XIV, 630 p., Hardcover
ISBN: 978-94-007-2855-4