Contents

1 Introduction ... 1

Part I Stable Isotopes

2 Isotope Geochemistry of Natural Waters ... 11
 2.1 Some Properties of Waters and Solutions ... 11
 2.1.1 The Notion of Activity and the Activity Coefficient 13
 2.1.2 The Relationship between Solvent and Solute Activity 14
 2.2 Water Vapor Pressure over the Water and Solution 15
 2.3 Physicochemical Foundations of Isotope Separation 17
 2.4 Hydrogen and Oxygen Isotope Separation at Phase Transition
 of Water .. 26
 2.5 Relationship Between the Isotope Reaction Change Constant
 and the Fractionation Factor .. 30
 2.6 Hydrogen and Oxygen Isotope Fractionation at Interaction
 Between Water and Gases and Rocks ... 33
 2.7 Isotope Geothermometry .. 35

3 Isotopic Composition of Ocean Water ... 49
 3.1 Distribution of Hydrogen and Oxygen Isotopes
 and Water Dynamics .. 49
 3.2 Effect of Evaporation and Vertical Water Exchange 54
 3.3 Dynamics of the Ocean Water ... 57
 3.4 Isotopic Composition of Ocean Water in the Past 62

4 Isotopic Composition of Atmospheric Moisture 67
 4.1 Hydrogen and Oxygen Isotope Fractionation
 in the Hydrological Cycle .. 67
 4.2 Isotopic Balance in the Global Hydrologic Cycle at Evaporation
 and Condensation of Water .. 79
 4.3 Isotopic Composition of Atmospheric Water in the Past 86
Part II Cosmogenic Radioisotopes

12 Origin and Production of Cosmogenic Radioisotopes 215
 12.1 Composition of Cosmic Radiation in the Earth’s Atmosphere 215
 12.2 Composition and Steady-state Abundances of Cosmogenic Radioisotopes in the Outer Shells of the Earth 218
 12.3 Distribution of Cosmogenic Radioisotopes in the Exchange Reservoirs ... 223

13 Tritium in Natural Waters .. 227
 13.1 Properties of Tritium and Sources of Its Occurrence 227
 13.2 Global Circulation of Tritium Water .. 235
 13.2.1 Tritium in Atmospheric Hydrogen and Methane 236
 13.2.2 Tritium in Atmospheric Water Vapor 239
 13.2.3 Tritium in Precipitation ... 241
 13.2.4 Global Distribution of Tritium 249
 13.3 Regional Distribution of Tritium in Precipitation 253
 13.3.1 The North American Continent 254
 13.3.2 The European–Asiatic Continent 254
 13.3.3 The African Continent ... 258
 13.3.4 The South American Continent 261
 13.3.5 Australia and New Zealand .. 262
 13.3.6 Antarctic ... 263
 13.3.7 Tritium in Precipitation over the Oceans 264
 13.4 Formation of Tritium Concentrations in the Atmosphere 264
 13.5 Tritium in Ocean Waters .. 270
 13.6 Tritium in Continental Surface Waters 277
 13.6.1 Tritium Content in River Water 277
 13.6.2 Tritium in Lakes and Reservoirs 285
 13.7 Tritium in Groundwaters ... 289
 13.8 Dating by Tritium .. 292
 13.8.1 Piston Flow Model .. 292
 13.8.2 Dispersive Model ... 293
 13.8.3 Complete Mixing Model ... 294
 13.8.4 Symmetrical Binominal Age Distribution Model 296
 13.8.5 Model of Mixing Waters of Different Ages 297
 13.8.6 Complicated Model .. 298

14 Radiocarbon in Natural Waters .. 301
 14.1 Origin and Distribution of Radiocarbon in the Nature 301
 14.2 Natural Variations of Radiocarbon in the Atmosphere and Biosphere ... 306
 14.3 Natural Radiocarbon in the Oceans 312
 14.4 Technogenic Radiocarbon in the Atmosphere and Oceans 316
 14.5 Forecast of Carbon Dioxide Increase in the Atmosphere 327
 14.6 Principles of Radiocarbon Dating 331
14.7 Radiocarbon Dating of Groundwater .. 335
14.8 Formation of Chemical and Isotonic Composition of Groundwater’s Carbonate System .. 339
14.9 Corrections in Groundwater Dating by Radiocarbon 343

15 The Other Cosmogenic Isotopes in Natural Waters 361
15.1 Origin of Other Cosmogenic Radioisotopes in the Atmosphere 361
15.2 Distribution of Other Cosmogenic Isotopes in the Hydrosphere 363
15.3 Use of Radioisotopes as Tracers in the Hydrological Cycle 365

Part III Radiogenic Isotopes

16 Production and Distribution of Radiogenic Isotopes 377
16.1 Geochemistry of Radiogenic Elements 378
16.1.1 Uranium .. 378
16.1.2 Thorium .. 382
16.1.3 Protactinium .. 383
16.1.4 Actinium .. 384
16.1.5 Radium .. 384
16.1.6 Radon .. 385
16.2 Separation of Radiogenic Elements and Isotopes 386
16.2.1 Separation of Uranium Isotopes 388
16.2.2 Separation of Thorium Isotopes 389
16.2.3 Separation of Radium Isotopes 390
16.3 Distribution of Radiogenic Elements in Natural Waters 391
16.3.1 Uranium Isotopes in Natural Waters 392
16.3.2 Thorium Isotopes in Natural Waters 398

17 Dating of Surface Water, Groundwater, and Sediments 407
17.1 Dating of Closed Reservoirs ... 407
17.2 Dating of Groundwater .. 411
17.3 Dating of Sediments ... 413
17.3.1 Uranium-Uranium Method .. 413
17.3.2 Uranium-Ionium Method ... 415
17.4 Isotopes of Radiogenic Elements as Indicators of Hydrologic Processes ... 418

Part IV Applications

18 Applications to the Problems of Dynamics of Natural Waters 427
18.1 Dynamics of Moisture in the Atmosphere 427
18.2 Mixing of River and Sea Waters in Estuaries 436
18.3 Water Exchange in the River Basins, Lakes, and Reservoirs 446
18.4 Water Dynamics in Unsaturated and Saturated Zone 452
18.5 Recharge and Discharge of Groundwater 456
18.6 Relationship of Aquifers .. 462
18.7 Separation of Recharged Water of Different Genesis in Mining 469
18.8 Determination of Radiocarbon Age of Groundwater 470
18.9 Determination of Flow Velocity and Direction in Regional Scale . 478
18.10 Paleoclimatic and Paleohydrogeologic Studies 480

19 Paleohydrology of the Aral-Caspian Basin 491
19.1 Formulation of the Problem 491
19.2 General Description of Study in the Caspian Sea 492
19.2.1 Laboratory Data of Core Analysis 493
19.2.2 Structure of Core Cross Section 495
19.2.3 Carbonate Mineral Content of Sediments 495
19.2.4 Ion-Salt Composition of Water Extracts 497
19.2.5 Radiocarbon Age of Sediments 498
19.2.6 Isotope Record in Carbonates 498
19.3 Interpretation of Paleoclimatic Events 504
19.3.1 Rate of Sedimentation and Change in the Regime of the Northern and Southern Rivers 504
19.3.2 Variations in the Sea Level 506
19.4 Study of Water Regime in the Aral Sea 508
19.5 Interpretation of Bottom Sediments 512
19.5.1 Kara-Bogaz-Gol Gulf 512
19.5.2 Lake Issyk-Kul 515
19.5.3 Aral Sea ... 518
19.6 Results and Conclusions 521

20 The Nature and Mechanism of the Earth Shell Separation and Origin of Hydrosphere 525
20.1 Existing Approaches to the Problem Solution 525
20.2 Separation of Hydrogen and Oxygen Isotopes in Natural Objects ... 527
20.3 Evidence from Carbon and Sulfur Isotopes 539
20.4 Chemical Differentiation of Proto-Planetary Substance 545
20.5 Recent Results of Study of the Earth Gravitational Field by the Satellites ... 557
20.6 The Nature and Mechanism of the Earth Shell Separation 558
20.7 Physical Meaning of Archimedes’ and Coriolis’ Forces 560
20.8 Self-Similarity Principle and Radial Component of Nonuniform Sphere ... 561
20.9 Charges-like Motion of Nonuniformities and Tangential Component of the Force Function 562
20.10 Differentiation of the Substances with Respect to Density and Condition for the Planet and the Satellite Separation 563
20.11 The Third Kepler’s Law as a Kinematics Basis for the Solar System Bodies Creation Problem Solution 571
20.12 Conclusion ... 576

References .. 579

Index .. 621