Contents

1 Introduction ... 1

Part I Stable Isotopes

2 Isotope Geochemistry of Natural Waters 11
 2.1 Some Properties of Waters and Solutions 11
 2.1.1 The Notion of Activity and the Activity Coefficient ... 13
 2.1.2 The Relationship between Solvent and Solute Activity ... 14
 2.2 Water Vapor Pressure over the Water and Solution 15
 2.3 Physicochemical Foundations of Isotope Separation 17
 2.4 Hydrogen and Oxygen Isotope Separation at Phase Transition of Water ... 26
 2.5 Relationship Between the Isotope Reaction Change Constant and the Fractionation Factor 30
 2.6 Hydrogen and Oxygen Isotope Fractionation at Interaction Between Water and Gases and Rocks 33
 2.7 Isotope Geothermometry ... 35

3 Isotopic Composition of Ocean Water 49
 3.1 Distribution of Hydrogen and Oxygen Isotopes and Water Dynamics ... 49
 3.2 Effect of Evaporation and Vertical Water Exchange 54
 3.3 Dynamics of the Ocean Water 57
 3.4 Isotopic Composition of Ocean Water in the Past 62

4 Isotopic Composition of Atmospheric Moisture 67
 4.1 Hydrogen and Oxygen Isotope Fractionation in the Hydrological Cycle .. 67
 4.2 Isotopic Balance in the Global Hydrologic Cycle at Evaporation and Condensation of Water 79
 4.3 Isotopic Composition of Atmospheric Water in the Past ... 86
Isotopic Composition of Surface Continental Waters

5.1 Isotopic Balance of the Continental Waters .. 95
5.2 Isotopic Composition of the River and Lake Water 101
5.3 Isotopic Composition of Water in Evaporating Basins 107

Isotopic Composition of Water in the Unsaturated and Saturated Zones

6.1 Relationship Between Surface and Ground Water 116
6.2 Groundwater Recharge at Present Time .. 118
6.3 Groundwater Recharge in the Past .. 118
6.4 Identification of Area of Groundwater Recharge 119
6.5 Relationship Between Aquifers ... 123
6.6 Mixing Proportions of Groundwater of Different Genesis 125
6.7 Groundwater Residence Time in an Aquifer 126
6.8 Relationship of Waters in Conjugate Hydrologic Basins 127

Isotopic Composition of Formation Waters

7.1 Relationship Between Hydrogen and Oxygen Isotopes in Formation Waters .. 129
7.2 Isotopic Composition of Formation Water in Sedimentary Basins 134

Hydrogen and Oxygen Isotopic Composition of Sedimentary Rocks of Marine Genesis and Implications for Paleothermometry

8.1 Isotopic Composition of Sediments and Pore Water 155
8.2 Paleothermometry Based on the Isotopic Composition of Cherts 161
8.3 Paleothermometry Based on the Isotopic Composition of Carbonate Rocks .. 169
8.4 Isotopic Composition of Evaporates .. 175

Hydrogen and Oxygen Isotopic Composition of Groundwater in Volcanic Regions

9.1 Use of Isotopes in Studying the Origin of Thermal Water 179
9.2 Isotopic Geothermometers ... 192

Hydrogen and Oxygen Isotopic Composition of Minerals of Magmatic and Metamorphic Rocks and Fluid Inclusions

10.1 Role of Water in Hydrothermal Alteration of the Rocks and Minerals .. 195
10.2 Meteoric Water in the Processes of Hydrothermal Formation of Minerals .. 201

Other Stable Isotopes in the Hydrosphere

11.1 Stable Isotopes of Carbon ... 205
11.2 Stable Isotopes of Sulfur ... 209
Part II Cosmogenic Radioisotopes

12 Origin and Production of Cosmogenic Radioisotopes
12.1 Composition of Cosmic Radiation in the Earth’s Atmosphere
12.2 Composition and Steady-state Abundances of Cosmogenic Radioisotopes in the Outer Shells of the Earth
12.3 Distribution of Cosmogenic Radioisotopes in the Exchange Reservoirs

13 Tritium in Natural Waters
13.1 Properties of Tritium and Sources of Its Occurrence
13.2 Global Circulation of Tritium Water
13.2.1 Tritium in Atmospheric Hydrogen and Methane
13.2.2 Tritium in Atmospheric Water Vapor
13.2.3 Tritium in Precipitation
13.2.4 Global Distribution of Tritium
13.3 Regional Distribution of Tritium in Precipitation
13.3.1 The North American Continent
13.3.2 The European–Asiatic Continent
13.3.3 The African Continent
13.3.4 The South American Continent
13.3.5 Australia and New Zealand
13.3.6 Antarctic
13.3.7 Tritium in Precipitation over the Oceans
13.4 Formation of Tritium Concentrations in the Atmosphere
13.5 Tritium in Ocean Waters
13.6 Tritium in Continental Surface Waters
13.6.1 Tritium Content in River Water
13.6.2 Tritium in Lakes and Reservoirs
13.7 Tritium in Groundwaters
13.8 Dating by Tritium
13.8.1 Piston Flow Model
13.8.2 Dispersive Model
13.8.3 Complete Mixing Model
13.8.4 Symmetrical Binominal Age Distribution Model
13.8.5 Model of Mixing Waters of Different Ages
13.8.6 Complicated Model

14 Radiocarbon in Natural Waters
14.1 Origin and Distribution of Radiocarbon in the Nature
14.2 Natural Variations of Radiocarbon in the Atmosphere and Biosphere
14.3 Natural Radiocarbon in the Oceans
14.4 Technogenic Radiocarbon in the Atmosphere and Oceans
14.5 Forecast of Carbon Dioxide Increase in the Atmosphere
14.6 Principles of Radiocarbon Dating
14.7 Radiocarbon Dating of Groundwater ... 335
14.8 Formation of Chemical and Isotonic Composition of Groundwater’s Carbonate System ... 339
14.9 Corrections in Groundwater Dating by Radiocarbon 343

15 The Other Cosmogenic Isotopes in Natural Waters 361
15.1 Origin of Other Cosmogenic Radioisotopes in the Atmosphere 361
15.2 Distribution of Other Cosmogenic Isotopes in the Hydrosphere ... 363
15.3 Use of Radioisotopes as Tracers in the Hydrological Cycle 365

Part III Radiogenic Isotopes

16 Production and Distribution of Radiogenic Isotopes 377
16.1 Geochemistry of Radiogenic Elements 378
 16.1.1 Uranium ... 378
 16.1.2 Thorium ... 382
 16.1.3 Protactinium .. 383
 16.1.4 Actinium .. 384
 16.1.5 Radium ... 384
 16.1.6 Radon .. 385
16.2 Separation of Radiogenic Elements and Isotopes 386
 16.2.1 Separation of Uranium Isotopes 388
 16.2.2 Separation of Thorium Isotopes 389
 16.2.3 Separation of Radium Isotopes 390
16.3 Distribution of Radiogenic Elements in Natural Waters 391
 16.3.1 Uranium Isotopes in Natural Waters 392
 16.3.2 Thorium Isotopes in Natural Waters 398

17 Dating of Surface Water, Groundwater, and Sediments 407
17.1 Dating of Closed Reservoirs .. 407
17.2 Dating of Groundwater ... 411
17.3 Dating of Sediments ... 413
 17.3.1 Uranium-Uranium Method ... 413
 17.3.2 Uranium-Ionium Method .. 415
17.4 Isotopes of Radiogenic Elements as Indicators of Hydrologic Processes .. 418

Part IV Applications

18 Applications to the Problems of Dynamics of Natural Waters ... 427
18.1 Dynamics of Moisture in the Atmosphere 427
18.2 Mixing of River and Sea Waters in Estuaries 436
18.3 Water Exchange in the River Basins, Lakes, and Reservoirs 446
18.4 Water Dynamics in Unsaturated and Saturated Zone 452
18.5 Recharge and Discharge of Groundwater 456
18.6 Relationship of Aquifers .. 462
18.7 Separation of Recharged Water of Different Genesis in Mining ... 469
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.8</td>
<td>Determination of Radiocarbon Age of Groundwater</td>
<td>470</td>
</tr>
<tr>
<td>18.9</td>
<td>Determination of Flow Velocity and Direction in Regional Scale</td>
<td>478</td>
</tr>
<tr>
<td>18.10</td>
<td>Paleoclimatic and Paleohydrogeologic Studies</td>
<td>480</td>
</tr>
<tr>
<td>19</td>
<td>Paleohydrology of the Aral-Caspian Basin</td>
<td>491</td>
</tr>
<tr>
<td>19.1</td>
<td>Formulation of the Problem</td>
<td>491</td>
</tr>
<tr>
<td>19.2</td>
<td>General Description of Study in the Caspian Sea</td>
<td>492</td>
</tr>
<tr>
<td>19.2.1</td>
<td>Laboratory Data of Core Analysis</td>
<td>493</td>
</tr>
<tr>
<td>19.2.2</td>
<td>Structure of Core Cross Section</td>
<td>495</td>
</tr>
<tr>
<td>19.2.3</td>
<td>Carbonate Mineral Content of Sediments</td>
<td>495</td>
</tr>
<tr>
<td>19.2.4</td>
<td>Ion-Salt Composition of Water Extracts</td>
<td>497</td>
</tr>
<tr>
<td>19.2.5</td>
<td>Radiocarbon Age of Sediments</td>
<td>498</td>
</tr>
<tr>
<td>19.2.6</td>
<td>Isotope Record in Carbonates</td>
<td>498</td>
</tr>
<tr>
<td>19.3</td>
<td>Interpretation of Paleoclimatic Events</td>
<td>504</td>
</tr>
<tr>
<td>19.3.1</td>
<td>Rate of Sedimentation and Change in the Regime of the Northern and Southern Rivers</td>
<td>504</td>
</tr>
<tr>
<td>19.3.2</td>
<td>Variations in the Sea Level</td>
<td>506</td>
</tr>
<tr>
<td>19.4</td>
<td>Study of Water Regime in the Aral Sea</td>
<td>508</td>
</tr>
<tr>
<td>19.5</td>
<td>Interpretation of Bottom Sediments</td>
<td>512</td>
</tr>
<tr>
<td>19.5.1</td>
<td>Kara-Bogaz-Gol Gulf</td>
<td>512</td>
</tr>
<tr>
<td>19.5.2</td>
<td>Lake Issyk-Kul</td>
<td>515</td>
</tr>
<tr>
<td>19.5.3</td>
<td>Aral Sea</td>
<td>518</td>
</tr>
<tr>
<td>19.6</td>
<td>Results and Conclusions</td>
<td>521</td>
</tr>
<tr>
<td>20</td>
<td>The Nature and Mechanism of the Earth Shell Separation and Origin of Hydrosphere</td>
<td>525</td>
</tr>
<tr>
<td>20.1</td>
<td>Existing Approaches to the Problem Solution</td>
<td>525</td>
</tr>
<tr>
<td>20.2</td>
<td>Separation of Hydrogen and Oxygen Isotopes in Natural Objects</td>
<td>527</td>
</tr>
<tr>
<td>20.3</td>
<td>Evidence from Carbon and Sulfur Isotopes</td>
<td>539</td>
</tr>
<tr>
<td>20.4</td>
<td>Chemical Differentiation of Proto-Planetary Substance</td>
<td>545</td>
</tr>
<tr>
<td>20.5</td>
<td>Recent Results of Study of the Earth Gravitational Field by the Satellites</td>
<td>557</td>
</tr>
<tr>
<td>20.6</td>
<td>The Nature and Mechanism of the Earth Shell Separation</td>
<td>558</td>
</tr>
<tr>
<td>20.7</td>
<td>Physical Meaning of Archimedes’ and Coriolis’ Forces</td>
<td>560</td>
</tr>
<tr>
<td>20.8</td>
<td>Self-Similarity Principle and Radial Component of Nonuniform Sphere</td>
<td>561</td>
</tr>
<tr>
<td>20.9</td>
<td>Charges-like Motion of Nonuniformities and Tangential Component of the Force Function</td>
<td>562</td>
</tr>
<tr>
<td>20.10</td>
<td>Differentiation of the Substances with Respect to Density and Condition for the Planet and the Satellite Separation</td>
<td>563</td>
</tr>
<tr>
<td>20.11</td>
<td>The Third Kepler’s Law as a Kinematics Basis for the Solar System Bodies Creation Problem Solution</td>
<td>571</td>
</tr>
<tr>
<td>20.12</td>
<td>Conclusion</td>
<td>576</td>
</tr>
</tbody>
</table>

References.. 579

Index .. 621