Contents

Part I General Concepts

1 Introduction .. 3
 1.1 Synthesis of NO in Biological Systems 3
 1.2 Mechanisms of NO Production 5
 1.3 Cellular Targets of NO: How Far from NO Synthesis? 7
 1.3.1 The Many Targets of NO 7
 1.3.2 Limited Diffusion of NO Expands the Frames
 of NO Biology 8
 Bibliography ... 11

Part II Nitric Oxide Synthesis in Prokaryote Cells

2 Nitric Oxide is a Bioproduct in Prokaryotes 19
 2.1 Prokaryotes are NO Producer Organisms 19
 2.2 Bacteria Synthesize NO and Contribute to Chemical NO
 Release from Nitrogen Oxides 19
 2.3 NO-Generating Microbes: Health, Biotechnological
 and Ecological Impact 21
 2.4 Mechanisms of Reductive NO Synthesis in Prokaryotes 24
 2.4.1 Denitrifying Bacteria Reduce NO$_2^-$ to NO: NO Synthesis
 in Anaerobiosis 24
 2.4.2 An Apparent Paradox: Nitrogen Fixation and NO Synthesis
 by Denitrification may be Present in the Same Bacterium . . 29
 2.4.3 Anaerobic Ammonia Oxidation (“anammox”) Also
 Generates NO .. 29
 2.4.4 Aerobe Bacteria are Also Capable of Reducing
 NO$_2^-$ to NO .. 30
 2.4.5 Reductive NO Synthesis Without NiRs: Cyanobacterial NO
 Production ... 31
 2.5 Oxidative NO Synthesis from L-arginine in Prokaryotes 32
2.5.1 Early Evidences on the Existence of Bacterial NOS Molecules 32
2.5.2 Characterization of Bacterial NOS Molecules ... 33
2.5.3 Functions of Bacterial NOS ... 34
2.6 Subcellular NO Synthesis: Fruit or Root in the Tree of Phylogeny? 35
2.7 Chapter Summary ... 38
Bibliography ... 38

Part III Nitric Oxide in Plant Organelles

3 Nitric Oxide Synthesis in the Chloroplast ... 49
 3.1 Vivat, crescat et floreat!—Overview of NO Effects in Plant Physiology 49
 3.2 Chloroplast: A Prokaryote Heritage of Plants .. 52
 3.3 Chloroplast NO Production and Photosynthesis ... 54
 3.3.1 Biochemistry of NO Production in the Chloroplast 54
 3.3.2 Iron Chelation and Photosynthesis is Affected by NO 57
 3.4 Chloroplast NO Synthesis and Cell Death .. 58
 3.4.1 The Effects of NO on the Chloroplast Membrane Systems: Thread Linking Photosynthesis and the Chloroplastic Way of Cell Death 58
 3.4.2 Similar Roles of NO in Prokaryotes and the Chloroplast 60
 3.5 Open Debates and Perspectives ... 61
 3.6 Chapter Summary ... 62
Bibliography ... 62

4 Nitric Oxide Synthesis in Leaf Peroxisomes and in Plant-Type Mitochondria 67
 4.1 Leaf Peroxisomes are Sites of Oxidative NO Synthesis 67
 4.2 Possible Roles of Peroxisomal NO Synthesis ... 68
 4.3 Plant-Type Mitochondria: Oxidative or Reductive NO Synthesis? 70
 4.4 Hunting for a Plant-Type NOS ... 73
 4.4.1 The First Pitfall in Finding Plant NOS .. 73
 4.4.2 The Arabidopsis thaliana NOS-1 .. 73
 4.4.3 The End of a Story? ... 76
 4.5 Chapter Summary ... 76
Bibliography ... 77

Part IV At the Edge of the Plant and Animal Kingdom

5 NO Synthesis in Subcellular Compartments of Fungi ... 83
 5.1 Introduction to the NO Biology in Fungi .. 83
 5.2 Be Fruitful and Multiply: The NO/cGMP Pathway and Sporulation 83
 5.2.1 Asexual Spore Formation Requires NO ... 83
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.2</td>
<td>Fungal Photoperiod and Sporulation: NO is Involved in Light Signalling</td>
<td>84</td>
</tr>
<tr>
<td>5.2.3</td>
<td>A Putative NO/cGMP Pathway in the Sporulation of Unicellular Fungi</td>
<td>86</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Photomorphogenesis and Light Dependent NO Synthesis in Basidiomycetes</td>
<td>86</td>
</tr>
<tr>
<td>5.3</td>
<td>Destructive and Protective Faces of NO in Fungi: Nitrosative Stress, Apoptosis and the Antioxidant Nature of NO</td>
<td>87</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Delaying Spore Germination by Mean of Nitrosative Stress</td>
<td>87</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Mechanisms to Escape Nitrosative Stress: Flavohemoglobins and Antioxidants</td>
<td>88</td>
</tr>
<tr>
<td>5.3.3</td>
<td>How Gene Expression Machinery Senses NO in Fungi</td>
<td>89</td>
</tr>
<tr>
<td>5.3.4</td>
<td>S-nitrosylation and Induction of Apoptotic Cell Death</td>
<td>90</td>
</tr>
<tr>
<td>5.3.5</td>
<td>The Antioxidant Nature of NO in Basidiomycetes</td>
<td>90</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Social Fungi and the Antioxidant NO: Stress Resistance of Lichens</td>
<td>90</td>
</tr>
<tr>
<td>5.4</td>
<td>Biosynthesis of NO in the Fungal Cell</td>
<td>92</td>
</tr>
<tr>
<td>5.4.1</td>
<td>The Oxidative and Reductive Ways of NO Synthesis in Fungi</td>
<td>92</td>
</tr>
<tr>
<td>5.5</td>
<td>Oxidative NO Synthesis from L-arginine in Fungi: Biochemistry and Compartmentalization of a Putative Fungal NOS</td>
<td>93</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Evidences Suggesting the Existence of a Fungus-Type NOS</td>
<td>93</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Yeast NOS: A Debated Enzyme</td>
<td>94</td>
</tr>
<tr>
<td>5.5.3</td>
<td>NOS-Like Activity Occurs in the Cytoplasm</td>
<td>94</td>
</tr>
<tr>
<td>5.6</td>
<td>Reductive NO Synthesis in the Fungal Mitochondria</td>
<td>95</td>
</tr>
<tr>
<td>5.6.1</td>
<td>A Novel Mechanism Behind Mitochondrial NO Synthesis: Cytochrome-c Oxidase</td>
<td>95</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Nitrite Reductase of Denitrifying Fungi Also Produces NO</td>
<td>96</td>
</tr>
<tr>
<td>5.7</td>
<td>Chapter Summary</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>98</td>
</tr>
</tbody>
</table>

Part V Nitric Oxide Synthesis in Animal Cells

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Harboring of NOS to the Cell Membrane</td>
<td>105</td>
</tr>
<tr>
<td>6.1</td>
<td>Threads Linking NOS to the Cell Membrane: Acylation and Adaptor Proteins</td>
<td>105</td>
</tr>
<tr>
<td>6.2</td>
<td>Association of eNOS with Caveolae of the Cell Membrane</td>
<td>111</td>
</tr>
<tr>
<td>6.3</td>
<td>Association of eNOS with Cell–Cell Junctions</td>
<td>112</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Endothelial Cell–Cell Adhesions Bind eNOS: More than Mechanical Anchoring</td>
<td>112</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Association of NOS with Gap Junctions: Dynamic S-nitrosylation/denitrosylation</td>
<td>116</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Tight Junctions and Adherens Junctions</td>
<td>117</td>
</tr>
</tbody>
</table>
12 Subcellular Redistribution of NOS ... 187
 12.1 Membrane Targeting and Release of eNOS from the Caveolae 187
 12.2 Mislocalization of Sarcolemmal nNOS in Muscle Dystrophies 188
 12.3 CAPON/nNOS Redistribution in Cardiomyocytes
 and Skeletal Muscle Fibers ... 191
 12.4 Uncoupling of the PSD95/nNOS Interface: Potential Medical
 Benefits .. 192
 12.5 Redistribution of the Golgi-System and the Associated NOS Pool . 193
 12.6 NOS in the Nucleus: A Transient or Permanent NOS Pool? 194
 12.7 Dynamic NOS-Pools of the Cell 195
 12.8 Chapter Summary .. 196
Bibliography .. 197

Appendix ... 201
Glossary ... 203
Index ... 205
The Biology of Subcellular Nitric Oxide
Roszer, T.
2012, XVIII, 210 p., Hardcover
ISBN: 978-94-007-2818-9