Contents

Part I Introduction

1 Introduction to Interior Active Noise Control 3
 1.1 Idea, Limit and Structure of Active Control Concepts 3
 1.2 Remarks on Interior Noise and Active Control Approaches 5
 1.2.1 Comments on the Interior Noise Problem 5
 1.2.2 Comments on Active Control Approaches 6
 1.2.3 A Qualitative Comparison of Active Control Approaches 7
 1.3 Examples for Engineering Applications of Interior ANC 15
 1.4 Objective of Book 17

Part II The Mechatronic Background of Feed-Forward Active Noise Control

2 Comments on Signals and Systems 25
 2.1 Comments on Signals 25
 2.1.1 Classification ... 26
 2.1.2 Characteristic Values and Functions 27
 2.2 Comments on Systems 32
 2.2.1 Definitions ... 32
 2.2.2 Transfer Behavior of LTI-Systems 32

3 Dynamics of Basic System 35
 3.1 Basic Field Variables 35
 3.2 Acoustic Field Equations 36
 3.3 Energy Density and Sound Intensity 39
 3.4 One-Dimensional Enclosed Sound Fields 41
 3.4.1 Free Vibrations in One-Dimensional Sound Fields 41
 3.4.2 Forced Vibrations in One-Dimensional Sound Fields 43

4 Sensors for Active Noise Control 49
 4.1 Acoustical Sensing by Condenser Type Microphones 50
Contents

4.2 Sound Intensity Measurement .. 52
4.2.1 Functional Principle of Sound Intensity Probes 52
4.2.2 Errors in Sound Intensity Measurements 54
4.3 Structural Sensing by Accelerometers 58

5 Actuators for Active Noise Control 61
5.1 Electro-Dynamical Loudspeakers 61
5.2 Electro-Dynamical Panel Speakers 65

6 Active Control of Tonal and Broadband Noise 71
6.1 Mathematical Preparation .. 72
6.1.1 Hermitian Matrices 72
6.1.2 Quadratic Optimization 73
6.1.3 Steepest-Decent Algorithm 74
6.2 Terms and Structure of Feed-Forward Control Approaches 76
6.3 Review and Evaluation of Control Strategies 77
6.3.1 Description of Benchmark System and Close Form Solution 78
6.3.2 Analysis of Specific Control Strategies 80
6.3.3 Comparison of Control Strategies 94
6.4 Multi-channel Control of Tonal Noise 104
6.4.1 Optimal Control of Tonal Noise 104
6.4.2 Adaptive Control of Tonal Noise 107
6.5 Active Control of Tonal Noise with Modified Cost Functions . 109
6.5.1 Optimal Control Using a General Cost Function 110
6.5.2 Remote Sensor Control 110
6.5.3 Parametric Controller Design 118
6.6 Multi-channel Control of Stochastic Disturbances 126
6.6.1 Optimal Control of Stochastic Disturbances 126
6.6.2 Adaptive Control of Stochastic Disturbances 128
6.7 A Very Short Note on Adaptive Feedback Control 144

Part III ANC-System Design: Theory

7 ANC-System Design Tools ... 149
7.1 Numerical Analysis of Sound Fields 149
7.1.1 A Short Overview on Numerical Methods 149
7.1.2 The Finite Element Method 151
7.2 Inverse Noise Source Identification 155
7.2.1 A Note on Source Identification Methods 155
7.2.2 The Inverse Finite Element Method 157
7.3 Initial Performance Estimation 163
7.3.1 Coherence Analysis 164
7.3.2 Transducer Placement Analysis 167
7.3.3 Correlation Analysis 168
7.3.4 Impulse Response Analysis 170
7.3.5 A Short Comparison of Initial Performance Estimators 172
7.4 Two Short Remarks on the Effect of Sampling Frequency 174
7.4.1 Attenuation of Aliasing ... 174
7.4.2 Comments on Filter Delay ... 174

8 ANC-System Design Methodology .. 177
8.1 A Note on the Design Methodology for Mechatronic Systems 177
8.2 System Maturity Levels .. 179
8.3 A Design Methodology for ANC-Systems 181
 8.3.1 ANC-System Design Tasks 181
 8.3.2 ANC-System Design Steps 182
 8.3.3 Matrix Model of the ANC-System Design Process 184

Part IV ANC-System Design: Examples

9 Active Noise Control in a Semi-closed Interior 189
 9.1 Description of Problem and Requirements 189
 9.1.1 Requirements .. 192
 9.2 Feasibility Study on ANC for the MA WA 192
 9.2.1 Noise Field Analysis for the MA WA 192
 9.2.2 Formulation of ANC-System Concept for the MA WA 195
 9.2.3 Proof of MA WA ANC-System Concept 196
 9.3 First Specification of Active Noise System 201
 9.3.1 First Specification of Microphones 202
 9.3.2 First Specification of Actuators 203
 9.3.3 First Specification of Controller Software 203
 9.3.4 Evaluation of First Specification 204
 9.4 Weight, Cost and Efficiency Study 206
 9.4.1 Actuator Design for ANC in the MA WA 206
 9.4.2 Improvement of Adaptive Signal Processing 208
 9.4.3 Optimization of Sensor and Actuator Locations 213
 9.5 Sensitivity Study for ANC in MA WA 220
 9.6 Robust Control of Sound in the MA WA 220
 9.6.1 Design, Construction and Verification of Relevant Test Rig 221
 9.6.2 Determination and Modeling of Uncertainties 225
 9.6.3 Review of the MA WA Robust Control Approach 228
 9.7 Design Process Summary ... 234

10 A Sound Intensity Probe with Active Free Field 237
 10.1 Feasibility Study on an Active Intensity Probe 237
 10.1.1 Analysis of the Controlled Sound Field 237
 10.1.2 Formulation of SIAF-System Concept 242
 10.1.3 Controller Design and Proof of SIAF-System Concept 242
 10.2 First Specification of an Active Intensity Probe 246
 10.2.1 First Specification of System Hardware 246
 10.2.2 Test of First SIAF-Specification 247
 10.3 Design Process Summary and Outlook 253
Adaptive Feed-Forward Control of Low Frequency Interior Noise
Kleutschkowski, Th.
2012, XXXVI, 330 p. 181 illus., 116 illus. in color., Hardcover