Contents

1 Introduction 1
 1.1 Motivation for This Work 1
 1.2 A Brief History of Reversible Computation and Adiabatic Logic 2

2 Fundamentals of Adiabatic Logic 5
 2.1 The Charging Process in Adiabatic Logic Compared to Static CMOS 5
 2.1.1 The Definition of the Energy Saving Factor (ESF) 8
 2.2 An Adiabatic System 8
 2.2.1 Introducing Adiabatic Logic Families Used in This Work 8
 2.2.2 The Four-Phase Power-Clock 9
 2.3 Loss Mechanisms in Adiabatic Logic 10
 2.3.1 Impact of Process Variations on the Losses in Adiabatic Logic 12
 2.4 Voltage Scaling—A Comparison of Static CMOS and Adiabatic Logic 13
 2.5 Properties of Adiabatic Logic and Resultant Design Considerations 15
 2.5.1 Dual-Rail Encoded Signals 15
 2.5.2 Inherent Pipelining 17
 2.5.3 Delay Considerations in Adiabatic Logic 18
 2.5.4 The Power Supply Net in Adiabatic Logic: Crosstalk, iR-drop, $L\frac{di}{dt}$-drop, Electromigration 18
 2.6 General Simulation Setup 21

3 Future Trend in Adiabatic Logic 23
 3.1 Scaling Trends for Sub 90 nm Transistors 24
 3.2 Adiabatic Logic with Novel Devices 30
 3.2.1 What Should an Ideal (Novel) Device for Adiabatic Logic Look Like? 30
 3.2.2 Adiabatic Logic with Carbon Nanotubes (CNT) 36
Adiabatic Logic
Future Trend and System Level Perspective
Teichmann, P.
2012, XVIII, 166 p., Hardcover
ISBN: 978-94-007-2344-3