Contents

1 **Introduction** ... 1
 1.1 Motivation for This Work 1
 1.2 A Brief History of Reversible Computation and Adiabatic Logic ... 2

2 **Fundamentals of Adiabatic Logic** 5
 2.1 The Charging Process in Adiabatic Logic Compared to Static CMOS ... 5
 2.1.1 The Definition of the Energy Saving Factor (ESF) 8
 2.2 An Adiabatic System ... 8
 2.2.1 Introducing Adiabatic Logic Families Used in This Work ... 8
 2.2.2 The Four-Phase Power-Clock 9
 2.3 Loss Mechanisms in Adiabatic Logic 10
 2.3.1 Impact of Process Variations on the Losses in Adiabatic Logic ... 12
 2.4 Voltage Scaling—A Comparison of Static CMOS and Adiabatic Logic ... 13
 2.5 Properties of Adiabatic Logic and Resultant Design Considerations 15
 2.5.1 Dual-Rail Encoded Signals 15
 2.5.2 Inherent Pipelining .. 17
 2.5.3 Delay Considerations in Adiabatic Logic 18
 2.5.4 The Power Supply Net in Adiabatic Logic: Crosstalk, \(iR \)-drop, \(L \frac{di}{dt} \)-drop, Electromigration 18
 2.6 General Simulation Setup 21

3 **Future Trend in Adiabatic Logic** 23
 3.1 Scaling Trends for Sub 90 nm Transistors 24
 3.2 Adiabatic Logic with Novel Devices 30
 3.2.1 What Should an Ideal (Novel) Device for Adiabatic Logic Look Like? 30
 3.2.2 Adiabatic Logic with Carbon Nanotubes (CNT) 36
3.2.3 Adiabatic Logic with the Vertical Slit Field Effect Transistor (VESFET) ... 43
3.3 (Negative) Bias Temperature Instability ((N)BTI) and Hot Carrier Injection (HCI) in Adiabatic Logic .. 51

3.3.1 Impact of NBTI on the Energy Dissipation of Adiabatic Logic Circuits .. 52
3.3.2 Comparison of the Stress Due to the Permanent NBTI in Static CMOS and AL 58
3.3.3 How Will Positive Bias Temperature Instability (PBTI) Impact Adiabatic Logic? 61

4 Generation of the Power-Clock .. 65

4.1 Introduction .. 65
4.2 Topologies of Inductor-Based Power-Clock Generators 67
4.3 Impact of Pattern-Induced Capacitive Variations on the Energy Dissipation of the Synchronized 2N2P LC-oscillator 69
4.3.1 Impact of Pattern-Induced Variations on the Dissipation of a Discrete-Cosine Transformation (DCT) System 71
4.4 Generation of the Synchronization Signals 72
4.4.1 Synchronous Versus Asynchronous Generation of the Control Signals for the Oscillator 73
4.4.2 Partitions of the Energy Losses Within an Adiabatic System 77

5 Power-Clock Gating ... 83

5.1 Introduction to Power-Clock Gating 83
5.2 The Theory of Power-Clock Gating 84
5.3 Gating Topologies for PCG .. 86
5.3.1 Cut-off with Power-down Transistors 86
5.3.2 Power-down of the Power-Clock Oscillator 101
5.4 Power-down Mode for the Synchronous 2N2P LC-oscillator .. 107

6 Arithmetic Structures in Adiabatic Logic 113

6.1 Design of Arithmetic Structures 114
6.1.1 Framework for the Estimation of E_{diss} and A_{active} 115
6.1.2 Ripple-Carry Adder (RCA) .. 115
6.1.3 Parallel-Prefix Adders (PPA) 119
6.2 Overhead Reduction by Applying Complex Gates 128
6.2.1 Impact of Increased Input Stack on the Energy Dissipation 129
6.2.2 Case Study: Energy, Latency and Area Reduction by Applying Complex Gates in the RCA Structure 130
6.3 Multi-operand Adders and the CORDIC Algorithm 136
6.3.1 Nested RCA Structure ... 136
6.3.2 The Carry-Save Adder (CSA) Structure 137
6.3.3 A CORDIC-Based Discrete Cosine Transformation (DCT) 138

7 Measurement Results of an Adiabatic FIR Filter 145

7.1 Structure of the Adiabatic FIR Filter 145
7.2 Measurement Results and Comparison to Static CMOS 149
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Conclusions</td>
<td>155</td>
</tr>
<tr>
<td>Bibliography</td>
<td>159</td>
</tr>
<tr>
<td>Index</td>
<td>165</td>
</tr>
</tbody>
</table>
Adiabatic Logic
Future Trend and System Level Perspective
Teichmann, P.
2012, XVIII, 166 p., Hardcover
ISBN: 978-94-007-2344-3