Contents

Part I The Essentials of Dissolved Species Transport in the Subsurface Environment: Basic Definitions, Fundamental Mechanisms and Mathematical Formulation

1 Advection and Dispersion of Dissolved Species in Aquifers 3
 1.1 Governing Equations and Solute Transport Parameters 3
 1.1.1 Advection of Conservative Components in Porous and Fractured Media 4
 1.1.2 Molecular Diffusion and Hydrodynamic Dispersion (Microdispersion) 11
 1.1.3 Initial and Boundary Conditions; Definitions of Concentration Functions 18
 1.2 Models for Advective Transport in Homogeneous Isotropic Media .. 20
 1.2.1 A Characteristics-Based Method for Solving the Transport Equations 20
 1.2.2 Solute Transport Process Analysis in Curvilinear Coordinates 24
 1.3 A One-Dimensional Model of Microdispersion 33
 1.3.1 Solutions for Infinite Porous Domain .. 34
 1.3.2 A Basic (Fundamental) Solution for Semi-Infinite Porous Domain 36
 1.3.3 On the Solution and Analysis of Solute Transport Problems by Applying the Laplace Transform . 38
 1.3.4 Quasi-One-Dimensional Solution of Microdispersion Problems in Deformed Flows in Porous Media .. 45
 1.4 Spatial (2D and 3D) Models of Microdispersion in Unidirectional Steady-State Flow 46
 1.4.1 Basic Solutions for a Point Source .. 47
 1.4.2 Approximate Solutions for 2D and 3D Solute Transport Problems 50
 1.4.3 Steady-State Asymptotics .. 52
1.4.4 Approximate Solutions for a Finite-Size Source 54
1.4.5 Exact Solutions for 3D Problem 57
1.4.6 The Influence of Geological Boundaries 58
1.5 Equations for Simplest Chemical Reactions and Transformations .. 60
 1.5.1 Sorption ... 60
 1.5.2 Decay .. 64
References .. 70

2 Water Movement and Solute Transport in Unsaturated Porous Media .. 77
 2.1 Basic Soil-Water Movement and Infiltration Models 78
 2.1.1 Governing Functions and Parameters 79
 2.1.2 Continuity Equation and its Major Representations 85
 2.1.3 Particular Solutions for Moisture Migration and Their Analysis ... 88
 2.2 On Models Coupling Water Infiltration and Solute Transport106
 2.2.1 Advection: A Characteristic Solution107
 2.2.2 Dispersion During Adsorption of Water by Soil111
 2.2.3 Advection–Dispersion Transport114
References ..116

Part II Conceptual Models for Regional Assessment of Solute Transport (Under Homogeneous Liquid Flow Conditions)

3 One-Dimensional Hydrodynamic Mixing Models for Regional Flow Systems Under Areal Recharge Conditions and Their Application to the Interpretation of Isotopic Data123
 3.1 Stable Component Migration124
 3.1.1 Flow and Mass Balance Under Confined Flow Conditions ...124
 3.1.2 Basic Analytical Solutions125
 3.1.3 Correspondence with a Reservoir Model: Transit Time and Transit Time Distribution128
 3.2 Transport of a Solute Subject to First-Order Single-Stage Decay ...131
 3.2.1 Basic Analytical Solutions131
 3.2.2 Variable Boundary Conditions132
 3.3 Migration of a Solute Subject to Chain Decay135
 3.3.1 Two-Stage Chain Decay of an Unstable Isotope Coming into an Aquifer with Infiltration Recharge136
 3.3.2 Two-Stage Chain Decay in Aquifer with a Radioactive Element in Solids as the Only Source of Radioactivity139
 3.3.3 Two-Member Chain Decay in Aquifer Solids Containing Several Radioactive Elements141
3.3.4 Basic Concept and Model Development for 4He Groundwater Dating .. 143
3.3.5 Converting Physical Units .. 146

3.4 Hydrodynamic Interpretation of Isotopic Groundwater Monitoring Data: Case Studies .. 149
3.4.1 On Groundwater Dating Using Global Isotopes 149
3.4.2 Calculated Distributions of Atmospheric 3H and Its Decay Product 3He in Groundwater (Typical Curves) .. 152
3.4.3 A Case History of 3H–3He Groundwater Analysis and Data Interpretation (Izhora Plateau, Leningrad Region, Russia) .. 157
3.4.4 Hydrodynamic Interpretation of Groundwater Isotopic Data from a Site of Deep Liquid Radioactive Waste Disposal, Siberia Chemical Combine, Russian Federation .. 159

References ... 168

4 Profile (Two-Dimensional in Vertical Cross-Section) Models for Solute Transport in Regional Flow Systems 173
4.1 Problem Statement .. 173
4.2 Homogeneous Confined Aquifer ... 175
 4.2.1 Flow Velocity Field ... 175
 4.2.2 Flow Kinematic Equations and Concentration Distributions .. 177
 4.2.3 Semi-Analytical Solution for the Distribution of Global Tritium over the Aquifer Depth (Typical Curves) .. 181
4.3 Two-Layer Confined Aquifer .. 183
 4.3.1 Model ... 183
 4.3.2 An Illustrative Example .. 186
4.4 Multi-Layer (Stratified) Aquifer ... 187
 4.4.1 Hydrodynamic Features of Flow 187
 4.4.2 Characteristic-Based Relations 192

References ... 196

5 Models for Assessment of Transverse Diffusive and Advective Transfer in Regional Two-Layer Systems 199
5.1 Diffusion-Dispersion Interlayer Exchange 200
 5.1.1 Balance Estimation for Layer-by-Layer Mass Transport Scheme ... 201
 5.1.2 A Case of Two-Layer Stratum with Sharp Permeability Contrast Between Layers 202
5.1.3 The Case of a Reservoir Consisting of Two Permeable Layers ...207

5.2 Combined Influence of Vertical Advection and Diffusion in a Two-Layer Leaky System on Solute Transport208
5.2.1 Derivation of Analytical Solution208
5.2.2 A Case Study: The Formation and Degradation of a Subsurface Iodine-Water Deposit (Paleohydrogeology Reconstruction)213

References ..217

6 Analytical Models for Solute Transport in Saturated Fractured-Porous Media ...219
6.1 Governing Parameters and Conceptual Model Formulation220
6.1.1 Parameters and Topological Presentation of Fractured Rock Continuum220
6.1.2 Mass Transfer Functions222
6.1.3 Basic Analytical Solutions (for Asymptotic Models)228
6.2 Generalized Solutions ..237
6.2.1 A Streamline-Based Approach237
6.2.2 Application of the Convolution Property of the Laplace Transform for Solving the Problem of Solute Advective Dispersion in Dual Porosity Systems238
6.3 Solute Transport in Heterogeneous Dual Porosity Media (Qualitative Analysis) ..243
6.4 Adsorption and Decay ...245
6.4.1 Adsorption ..245
6.4.2 Decay ..246
6.4.3 Migration of Unstable Components Under Areal Recharge ...253

References ..255

7 Flow and Transport Through Unsaturated Fractured-Porous Rocks ...259
7.1 Problem Conceptualization ...259
7.2 Saturation Profile at Steady-State262
7.3 Solute Transport Under Steady-State Moisture Distribution Condition ...264
7.4 Nonequilibrium Flow and Transport Processes266
7.4.1 Model-Based Approaches267
7.4.2 A Solution Describing the Early Stage of Wetting Front Propagation ..269
7.4.3 The Integral Mass Balance Approach272
7.4.4 A Solution for Leading Front Propagation
Under Exponentially Damped Regime
of Water Imbibition into a Gas-Saturated
Matrix Block ..273

7.4.5 A Generalized Solution ...274

7.4.6 Kinematic Wave Approximation278

7.4.7 Solute Transport Problem Formulation282

References ...282

Part III Solute Transport Processes Induced by Recharge and Discharge Wells

8 Models for Tracer Test Analysis and Interpretation287

8.1 Tracer Migration in a Radially Divergent Flow Field288
 8.1.1 Mathematical Background288
 8.1.2 Microdispersion: A Full Analytical Solution293
 8.1.3 Approximate Solutions ..295
 8.1.4 Tracer Tests in Fractured-Porous Aquifers299

8.2 Tracer Migration in a Radially Convergent Flow Field302
 8.2.1 On the Application of Approximated Models
 with Linear Geometry and the Assessment
 of Distorting Factors ..303
 8.2.2 Microdispersion of Tracer in a Homogeneous
 Single Porosity Aquifer306
 8.2.3 Tracer Transport in a Fractured-Porous Aquifer309

8.3 The Time Lag for Breakthrough Curves and Tracer
Dilution in a Source Well ...311
 8.3.1 The Time Lag for Breakthrough Curves
 Detected in an Observation Well311
 8.3.2 Effect of Tracer Dilution in the Source Well315

8.4 Analytical Models for Doublet Tracer Testing316
 8.4.1 Flow Field and Travel Time Between
 Recharge and Discharge Wells317
 8.4.2 Piston-Like Tracer Displacement
 in a Homogeneous Single Porosity Aquifer318
 8.4.3 An Approximate Solution for Microdispersion
 in a Homogeneous Aquifer321
 8.4.4 Solutions for Mass Transfer in a Fractured-
 Porous Aquifer ..322

8.5 Problems Related to the Subvertical Migration
of Tracers in a Field of Recharge and Discharge Wells323
 8.5.1 Problem Conceptualization323
 8.5.2 Partially-Penetrating Well Operation
 Under the Condition of Nonuniform Initial
 Concentration Profile325
8.5.3 Plots and Formulas for the Analysis of Vertical Dipole Tests ..329

References ..335

9 Models for Prediction of Effects of Pumping on Groundwater Quality at Well-Fields ..339

9.1 Change in the Groundwater Quality in Leaky Aquifer Systems339
 9.1.1 Flow and Mass Balance Equations ...340
 9.1.2 Solutions of Radial Flow Problems ..342
 9.1.3 Solution of Solute Transport Problems344

9.2 Change in the Water Quality of Unconfined Producing Aquifer Under the Influence of Weathering Sulphide Mineral Products in Vadoze Zone ..351
 9.2.1 Governing Factors and the Scale of the Process351
 9.2.2 Thermodynamics of Chemical Weathering Process354
 9.2.3 Sulfide Oxidation Kinetics ..355
 9.2.4 Distribution of Oxygen and Sulfates in the Vadoze Zone ...356
 9.2.5 Sulfate Migration in an Aquifer ..359

References ..365

Part IV Lumped-Parameter Models for Flow and Solute Balance in Coupled Surface-Water/Groundwater Systems

10 Conceptual Lumped-Parameter Models for Coupled Transient Flow and Solute Transport in Catchments369

10.1 Basic Concepts and Definitions ..369

10.2 A Two-Layer Model with Lumped Parameters for Lateral Subsurface Flow and Base Flow ..372

10.3 Basic Analytical Functions ..375
 10.3.1 Steady-State Flow ..375
 10.3.2 Unsteady-State Flow ...375

10.4 Time-Varying Infiltration ...377
 10.4.1 Computation Algorithm ..377
 10.4.2 An Illustrative (Synthesized) Example378

10.5 A Coupled Solution of Fluid Flow and Solute Transport Equations for Time-Independent Boundary Conditions ...379
 10.5.1 Steady-State Flow Field ..379
 10.5.2 Transient Flow Field ...380

10.6 A Coupled Solution of Fluid Flow and Solute Transport Equations for Time-Variable Input Functions383
 10.6.1 Numerical–Analytical Solution Algorithm383
 10.6.2 An Illustrative (Synthesized) Example384

10.7 Runoff, Infiltration, and Groundwater Recharge385
 10.7.1 Water Budget ...386
10.7.2 Infiltration Models and Conceptual Scenarios for Runoff Generation ..388
10.8 A Modified SCS-CN Model ...390
10.8.1 A Basic Semi-Empirical Formula for Runoff Calculation .390
10.8.2 Basic Relationships for Flow Characteristics392
10.8.3 Concentration Response Function393
10.8.4 Illustrative Examples ...394
References ..402

11 Unsteady-State Hydrogeological Model of Evaporation-Induced Sedimentation in a Surface Reservoir ..405
11.1 Problem Formulation ...405
11.2 Basic Balance Equation ..407
11.2.1 The Case of $C_1 < C_1^*$...407
11.2.2 The Case of $C_1 \geq C_1^*$...409
11.3 Numerical Solutions of the Problem and Their Analysis410
References ..413

Part V Variable-Density Flow and Solute Transport: Physical Phenomena and Mathematical Formulation

12 Dynamic Equilibrium of Freshwater–Saltwater Interface417
12.1 Basic Steady-State Models ...417
12.1.1 Interface Between Two Immiscible Liquids in Equilibrium ...417
12.1.2 Menken–Herzberg Ratio (Approximation) ...419
12.2 Approximate Solutions of the Problem of the Shape of the Seawater–Fresh Groundwater Interface ...421
12.2.1 A Confined Coastal Aquifer ...421
12.2.2 A Leaky Confined Coastal Aquifer423
12.2.3 A Phreatic Coastal Aquifer Under Recharge Conditions ...426
12.2.4 Freshwater Lens on an Elongated Oceanic Island427
12.3 Equilibrium for Saltwater Upconing Beneath a Partially Penetrating Well ...429
12.3.1 Problem Setting and Analysis of Existing Approaches and Solutions ...430
12.3.2 Analytical Solutions for the Critical Pumping Rate and the Critical Interface Rise ...432
References ..436

13 Dynamics of Saltwater–Freshwater Interface439
13.1 Two-Dimensional Profile Models for Immiscible Fluids Interface Displacement ...439
13.1.1 Linear Displacement ..440
13.1.2 Radial Displacement ..447
13.2 Application of Two-Phase Flow Approach for Brine Transport in Porous Media Description453
13.2.1 Physical and Mathematical Basis453
13.2.2 Properties of Particular Solutions455

References ...460

14 Studying Subsurface Density-Induced Phenomena Using Numerical Modeling ..463
14.1 On Physical Approaches to Mathematical Programming Formalism ...464
14.2 Brine Migration in Idealized Aquifer Systems468
 14.2.1 Numerical Simulators’ Performance Capabilities and Their Testing ..468
 14.2.2 Physical Phenomena Analysis for Migration of a Brine Released from a Surface Reservoir473
 14.2.3 Solute Concentration in a Pumping Well Affected by Saltwater–Freshwater Interface Upconing481

References ...489

Part VI Case Histories of Subsurface Contamination by Industrial and Environmental Brines: Field Data Analysis and Modeling of Migration Processes

15 Radioactive Brine Migration at the Lake Karachai Site (South Urals, Russian Federation) ..495
15.1 Introduction Remarks ..495
15.2 Hydrogeological Setting and General Description of the Migration Process ...498
15.3 Groundwater Contamination Plume500
 15.3.1 A Structure of Groundwater Flow at the Site500
 15.3.2 The Distribution of the Radionuclides and Principal Ions Within Contamination Plume501
15.4 Overview of Modeling Analysis Approach508
15.5 Model Setup and Calibration ...509
 15.5.1 Model Design ...510
 15.5.2 Sharp-Interface Approach511
 15.5.3 Fully Miscible Transport Modeling Approach513
 15.5.4 Brine Plume Simulation and Prediction515

References ...517

16 Modeling of Seawater Intrusion in Coastal Area of River Andarax Delta (Almeria, Spain) ..519
16.1 Study Area ..519
 16.1.1 Brief Geological Description of the Site520
 16.1.2 Hydrogeological Setting521
16.2 Groundwater Salinization ..523
 16.2.1 Spatial and Temporal Changes in Groundwater Quality ...523
 16.2.2 Major Results of Vertical Electrical Soundings526
16.3 Conceptualization and Model Design of Seawater
 Intrusion Process ...527
16.4 Modeling Results ..530
References ...534

17 Studying and Modeling of Uncontrolled Discharge of Deep
 Brine into Mine Drainage Systems at the Korshunovsky
 Iron Ore Mine (Eastern Siberia, Russian Federation)535
 17.1 A Brief Description of the Geological and
 Hydrological Structure of the Site, Drainage Measures
 and Groundwater Regime Disturbed by Mining Operations536
 17.1.1 Hydrogeological Units ..537
 17.1.2 Drainage of the Open Pit Mine537
 17.1.3 Vertical Hydrogeochemical Stratification
 of the Groundwater System and Temporal
 Changes in Groundwater Quality538
 17.2 Analytical Assessments ..539
 17.3 Numerical Modeling ...541
 17.3.1 Process Conceptualization and Model Design542
 17.3.2 Modeling Results ...542
 17.3.3 Experimental Verification543
References ...544

18 Light Wastewater Injection into a Deep Geological
 Formation Containing Brine (“Volzhsky Orgsinte”
 Deep-Well Disposal Site, Central Russia Region)545
 18.1 Hydrogeological Characteristics and Setting
 of the Geological Environment545
 18.1.1 Available Field Data ..545
 18.1.2 Conceptualization of the Hydrogeological
 Setting and Model Description551
 18.2 The Concept and Technique of Numerical Analysis552
 18.3 Numerical Solution of a Groundwater Transport Problem554
References ...556

Part VII Physicochemical Description and Mathematical Formulation
 of Sorption Processes

19 Conceptual Models for Sorption Under Batch Conditions561
 19.1 Sorption Equilibrium ..561
 19.1.1 Principal Sorption Isotherms561
19.1.2 Principal Factors Affecting the Experimental Isotherm Data ...564
19.1.3 Hysteresis Phenomenon in Sorption566
19.2 Models of Sorption/Desorption Kinetics571
 19.2.1 Sorption Kinetics ...572
 19.2.2 A Generalized Nonequilibrium Sorption Model572
19.3 Models for Static (Batch) Sorption Experiments573
 19.3.1 Mass Balance in a Batch Experiment573
 19.3.2 One-Site Kinetic Model of Sorption with Concomitant Mineral Dissolution574
References ..580

20 Conceptual Transport Models for Adsorbable Solutes585
 20.1 Equilibrium Sorption in Groundwater Flow585
 20.1.1 Effective Transfer Parameters for Equilibrium Reversible Sorption ...585
 20.1.2 The Influence of Nonlinear Sorption on Adve...
21.3 Hysteresis in Sorption ..627
21.3.1 Experiments with Reference Samples of Cambrian Sands ...627
21.3.2 Model Estimates of the Formation of Concentration Fronts633
21.4 Spatial Variability of Sorption Parameters ...634
21.4.1 A Review of Published Materials634
21.4.2 Spatial Variability of Nonlinear Sorption Parameters for Sr-90636
References ..644

22.1 Introduction Remarks ..647
22.2 The Structure, Chemical and Mineral Composition, and the Physical Properties of the Clays ..649
22.3 Rock Mechanical and Hydraulic Properties ..652
22.4 Variations in Physical and Mechanical Properties over Depth ...653
22.5 A Comparative Analysis of the Clay Formations ..657
22.6 Sorption–Desorption Experiments (Vkt Clay) ..658
22.6.1 Sorption658
22.6.2 Desorption660
22.7 Diffusion Experiments ...662
22.7.1 Single-Chamber Diffusion Cell (In/Out-Diffusion) Tests with Packing Cambrian Clay662
22.7.2 Single-Chamber Diffusion Cell Tests with Undisturbed Vendian Clay Samples669
22.7.3 A 3D Diffusion Test with a Cambrian Clay Sample of Natural Structure672
22.7.4 A Comparative Analysis677
References ..679

23.1 Nonideal Behavior of Sorption Curves Observed in Batch Tests with Core Material from the Tomsk-7 Site681
23.1.1 Materials, Methods, and Experimental Series ..682
23.1.2 Results: Qualitative Analysis ..684
23.1.3 Modeling Results and Discussion694
23.1.4 On the Direction of Processes Under Extremely High Temperatures698
23.2 The Influence of Mineral Transformation of Aquifer Matrix on Radionuclide Sorption in Batch Tests with Core Material from the Krasnoyarsk-26 Site 701
 23.2.1 General Information .. 701
 23.2.2 Experimental Setup and Analysis of the Major Results 702
23.3 Radionuclide Sorption onto Fresh Fractures of Volcanogenic Metamorphized Rocks from the Lake Karachai Site ... 706
 23.3.1 Samples and Experimental Setup 707
 23.3.2 Sorption Parameters .. 708
 23.3.3 Hysteresis in Sorption ... 709
References .. 710

Part IX Colloid-Facilitated Solute Transport in Aquifers

24 Colloidal Systems and Equilibrium in Such Systems 715
 24.1 General Views on Colloids and Their Genesis 715
 24.2 Properties of Colloidal Systems 719
 24.2.1 Stability of Colloidal System 719
 24.2.2 Mobility and Accumulation of Colloids in the Porous Media ... 722
 24.3 Sorption of Chemical Species onto Colloids (Under Batch Conditions) ... 724
 24.3.1 Basic Reactions ... 724
 24.3.2 Governing Equations for Sorption Equilibrium 726
 24.3.3 Sorption Kinetics and Some Experimental Data 727
 24.4 Subsurface Behavior of Actinides at Existing and Proposed RW Disposal Sites ... 731
 24.4.1 Sites Where Pu and Some Other Actinides Have Been Detected in the Environment 731
 24.4.2 Designed and Engineered Repositories for RW Disposal .. 733
References .. 735

25 Experimental Study of Radionuclide Interaction with Colloids with Respect to Tomsk-7 Deep-Well RW Disposal in a Geological Formation ... 739
 25.1 A Study of Sorption of Plutonium on Colloids in Ultrafiltration Experiments with Synthesized Solutions 739
 25.1.1 Experimental Setup .. 739
 25.1.2 Interpretation of Experimental Results 743
 25.2 A Study of Colloidal Forms of Radionuclide Migration at a Radioactive Waste Disposal Site 750
 25.2.1 Experimental Setup .. 750
 25.2.2 Calculation Algorithm and Obtained Parameter Values .. 752
Reference ... 754
26 Models of Sorption Type for Colloid-Facilitated Transport in Aquifers

26.1 The Governing Equations for Migration of Colloidal Solutions
 26.1.1 A Dual-Species Model
 26.1.2 Transport of a Polydisperse Colloidal Solution

26.2 A Model with Effective Parameters
 26.2.1 Equilibrium Reversible Sorption
 26.2.2 Irreversible Sorption

26.3 Numerical Modeling and Illustrative Examples
 26.3.1 Introduction Comments
 26.3.2 Equilibrium Sorption
 26.3.3 The Influence of Sorption Kinetics

References

27 A Thermodynamics-Based Conceptual Model for Colloid-Facilitated Solute Transport

27.1 Surface Complexation Models (Static Formulation)

27.2 On Modeling Approach for Multicomponent Solute Transport
 27.2.1 Tests and Illustrative Examples
 27.2.2 Sample Problems and Analysis of Migration Process

27.3 A Conceptual Model for the Subsurface Transport of Plutonium on Colloidal Particles Involving Surface Complexation Reactions
 27.3.1 The Basic Chemistry of Plutonium
 27.3.2 Examples of Modeling Assessments for Migration of the Sodium Nitrate Solution Containing Pu(IV) and Colloids

References

Conclusion

Index
Subsurface Solute Transport Models and Case Histories
With Applications to Radionuclide Migration
Rumynin, V.G.
2011, XXI, 815 p. 309 illus., Hardcover