Contents

Part I The Essentials of Dissolved Species Transport in the Subsurface Environment: Basic Definitions, Fundamental Mechanisms and Mathematical Formulation

1 Advection and Dispersion of Dissolved Species in Aquifers 3
 1.1 Governing Equations and Solute Transport Parameters 3
 1.1.1 Advection of Conservative Components in Porous and Fractured Media .. 4
 1.1.2 Molecular Diffusion and Hydrodynamic Dispersion (Microdispersion) .. 11
 1.1.3 Initial and Boundary Conditions; Definitions of Concentration Functions ... 18
 1.2 Models for Advective Transport in Homogeneous Isotropic Media ... 20
 1.2.1 A Characteristics-Based Method for Solving the Transport Equations .. 20
 1.2.2 Solute Transport Process Analysis in Curvilinear Coordinates ... 24
 1.3 A One-Dimensional Model of Microdispersion 33
 1.3.1 Solutions for Infinite Porous Domain ... 34
 1.3.2 A Basic (Fundamental) Solution for Semi-Infinite Porous Domain .. 36
 1.3.3 On the Solution and Analysis of Solute Transport Problems by Applying the Laplace Transform 38
 1.3.4 Quasi-One-Dimensional Solution of Microdispersion Problems in Deformed Flows in Porous Media 45
 1.4 Spatial (2D and 3D) Models of Microdispersion in Unidirectional Steady-State Flow ... 46
 1.4.1 Basic Solutions for a Point Source ... 47
 1.4.2 Approximate Solutions for 2D and 3D Solute Transport Problems .. 50
 1.4.3 Steady-State Asymptotics ... 52
1.4.4 Approximate Solutions for a Finite-Size Source 54
1.4.5 Exact Solutions for 3D Problem 57
1.4.6 The Influence of Geological Boundaries 58
1.5 Equations for Simplest Chemical Reactions and Transformations .. 60
 1.5.1 Sorption .. 60
 1.5.2 Decay .. 64
References ... 70

2 Water Movement and Solute Transport in Unsaturated
Porous Media .. 77
 2.1 Basic Soil-Water Movement and Infiltration Models 78
 2.1.1 Governing Functions and Parameters 79
 2.1.2 Continuity Equation and its Major Representations 85
 2.1.3 Particular Solutions for Moisture Migration
 and Their Analysis .. 88
 2.2 On Models Coupling Water Infiltration and Solute Transport 106
 2.2.1 Advection: A Characteristic Solution 107
 2.2.2 Dispersion During Adsorption of Water by Soil 111
 2.2.3 Advection–Dispersion Transport 114
References ... 116

Part II Conceptual Models for Regional Assessment of Solute Transport
(Under Homogeneous Liquid Flow Conditions)

3 One-Dimensional Hydrodynamic Mixing Models for
Regional Flow Systems Under Areal Recharge Conditions
and Their Application to the Interpretation of Isotopic Data 123
 3.1 Stable Component Migration .. 124
 3.1.1 Flow and Mass Balance Under Confined Flow
 Conditions .. 124
 3.1.2 Basic Analytical Solutions 125
 3.1.3 Correspondence with a Reservoir Model:
 Transit Time and Transit Time Distribution 128
 3.2 Transport of a Solute Subject to First-Order Single-Stage Decay ... 131
 3.2.1 Basic Analytical Solutions 131
 3.2.2 Variable Boundary Conditions 132
 3.3 Migration of a Solute Subject to Chain Decay 135
 3.3.1 Two-Stage Chain Decay of an Unstable
 Isotope Coming into an Aquifer with
 Infiltration Recharge .. 136
 3.3.2 Two-Stage Chain Decay in Aquifer with
 a Radioactive Element in Solids as the Only
 Source of Radioactivity 139
 3.3.3 Two-Member Chain Decay in Aquifer Solids
 Containing Several Radioactive Elements 141
3.3.4 Basic Concept and Model Development for \(^4\)He Groundwater Dating .. 143
3.3.5 Converting Physical Units .. 146

3.4 Hydrodynamic Interpretation of Isotopic Groundwater Monitoring Data: Case Studies 149
3.4.1 On Groundwater Dating Using Global Isotopes 149
3.4.2 Calculated Distributions of Atmospheric \(^3\)H and Its Decay Product \(^3\)He in Groundwater (Typical Curves) .. 152
3.4.3 A Case History of \(^3\)H–\(^3\)He Groundwater Analysis and Data Interpretation (Izhora Plateau, Leningrad Region, Russia) ... 157
3.4.4 Hydrodynamic Interpretation of Groundwater Isotopic Data from a Site of Deep Liquid Radioactive Waste Disposal, Siberia Chemical Combine, Russian Federation 159

References .. 168

4 Profile (Two-Dimensional in Vertical Cross-Section) Models for Solute Transport in Regional Flow Systems 173
4.1 Problem Statement ... 173
4.2 Homogeneous Confined Aquifer 175
 4.2.1 Flow Velocity Field ... 175
 4.2.2 Flow Kinematic Equations and Concentration Distributions .. 177
 4.2.3 Semi-Analytical Solution for the Distribution of Global Tritium over the Aquifer Depth (Typical Curves) .. 181
4.3 Two-Layer Confined Aquifer ... 183
 4.3.1 Model .. 183
 4.3.2 An Illustrative Example 186
4.4 Multi-Layer (Stratified) Aquifer 187
 4.4.1 Hydrodynamic Features of Flow 187
 4.4.2 Characteristic-Based Relations 192

References .. 196

5 Models for Assessment of Transverse Diffusive and Advective Transfer in Regional Two-Layer Systems 199
5.1 Diffusion-Dispersion Interlayer Exchange 200
 5.1.1 Balance Estimation for Layer-by-Layer Mass Transport Scheme ... 201
 5.1.2 A Case of Two-Layer Stratum with Sharp Permeability Contrast Between Layers 202
5.1.3 The Case of a Reservoir Consisting of Two Permeable Layers ...207

5.2 Combined Influence of Vertical Advection and Diffusion in a Two-Layer Leaky System on Solute Transport208

5.2.1 Derivation of Analytical Solution208

5.2.2 A Case Study: The Formation and Degradation of a Subsurface Iodine-Water Deposit (Paleohydrogeology Reconstruction)213

References ..217

6 Analytical Models for Solute Transport in Saturated Fractured-Porous Media ...219

6.1 Governing Parameters and Conceptual Model Formulation220

6.1.1 Parameters and Topological Presentation of Fractured Rock Continuum ..220

6.1.2 Mass Transfer Functions ..222

6.1.3 Basic Analytical Solutions (for Asymptotic Models)228

6.2 Generalized Solutions ..237

6.2.1 A Streamline-Based Approach237

6.2.2 Application of the Convolution Property of the Laplace Transform for Solving the Problem of Solute Advective Dispersion in Dual Porosity Systems238

6.3 Solute Transport in Heterogeneous Dual Porosity Media (Qualitative Analysis) ...243

6.4 Adsorption and Decay ...245

6.4.1 Adsorption ..245

6.4.2 Decay ...246

6.4.3 Migration of Unstable Components Under Areal Recharge ...253

References ..255

7 Flow and Transport Through Unsaturated Fractured-Porous Rocks ...259

7.1 Problem Conceptualization ...259

7.2 Saturation Profile at Steady-State262

7.3 Solute Transport Under Steady-State Moisture Distribution Condition ...264

7.4 Nonequilibrium Flow and Transport Processes266

7.4.1 Model-Based Approaches267

7.4.2 A Solution Describing the Early Stage of Wetting Front Propagation ..269

7.4.3 The Integral Mass Balance Approach272
Part III Solute Transport Processes Induced by Recharge and Discharge Wells

8 Models for Tracer Test Analysis and Interpretation ...287

8.1 Tracer Migration in a Radially Divergent Flow Field288
8.1.1 Mathematical Background ...288
8.1.2 Microdispersion: A Full Analytical Solution293
8.1.3 Approximate Solutions ..295
8.1.4 Tracer Tests in Fractured-Porous Aquifers ..299

8.2 Tracer Migration in a Radially Convergent Flow Field302
8.2.1 On the Application of Approximated Models with Linear Geometry and the Assessment of Distorting Factors ..303
8.2.2 Microdispersion of Tracer in a Homogeneous Single Porosity Aquifer306
8.2.3 Tracer Transport in a Fractured-Porous Aquifer309

8.3 The Time Lag for Breakthrough Curves and Tracer Dilution in a Source Well ..311
8.3.1 The Time Lag for Breakthrough Curves Detected in an Observation Well311
8.3.2 Effect of Tracer Dilution in the Source Well ..315

8.4 Analytical Models for Doublet Tracer Testing ..316
8.4.1 Flow Field and Travel Time Between Recharge and Discharge Wells317
8.4.2 Piston-Like Tracer Displacement in a Homogeneous Single Porosity Aquifer318
8.4.3 An Approximate Solution for Microdispersion in a Homogeneous Aquifer321
8.4.4 Solutions for Mass Transfer in a Fractured-Porous Aquifer322

8.5 Problems Related to the Subvertical Migration of Tracers in a Field of Recharge and Discharge Wells323
8.5.1 Problem Conceptualization ...323
8.5.2 Partially-Penetrating Well Operation Under the Condition of Nonuniform Initial Concentration Profile ...325
8.5.3 Plots and Formulas for the Analysis of Vertical Dipole Tests ...329

References ...335

9 Models for Prediction of Effects of Pumping on Groundwater Quality at Well-Fields ...339

9.1 Change in the Groundwater Quality in Leaky Aquifer Systems339
 9.1.1 Flow and Mass Balance Equations ..340
 9.1.2 Solutions of Radial Flow Problems ..342
 9.1.3 Solution of Solute Transport Problems344

9.2 Change in the Water Quality of Unconfined Producing Aquifer Under the Influence ofWeathering Sulphide Mineral Products in Vadoze Zone351
 9.2.1 Governing Factors and the Scale of the Process351
 9.2.2 Thermodynamics of Chemical Weathering Process354
 9.2.3 Sulfide Oxidation Kinetics ..355
 9.2.4 Distribution of Oxygen and Sulfates in the Vadoze Zone356
 9.2.5 Sulfate Migration in an Aquifer ...359

References ...365

Part IV Lumped-Parameter Models for Flow and Solute Balance in Coupled Surface-Water/Groundwater Systems

10 Conceptual Lumped-Parameter Models for Coupled Transient Flow and Solute Transport in Catchments369

10.1 Basic Concepts and Definitions ...369

10.2 A Two-Layer Model with Lumped Parameters for Lateral Subsurface Flow and Base Flow372

10.3 Basic Analytical Functions ..375
 10.3.1 Steady-State Flow ..375
 10.3.2 Unsteady-State Flow ...375

10.4 Time-Varying Infiltration ..377
 10.4.1 Computation Algorithm ...377
 10.4.2 An Illustrative (Synthesized) Example378

10.5 A Coupled Solution of Fluid Flow and Solute Transport Equations for Time-Independent Boundary Conditions .379
 10.5.1 Steady-State Flow Field ...379
 10.5.2 Transient Flow Field ...380

 10.6.1 Numerical–Analytical Solution Algorithm383
 10.6.2 An Illustrative (Synthesized) Example384

10.7 Runoff, Infiltration, and Groundwater Recharge ..385
 10.7.1 Water Budget ..386
10.7.2 Infiltration Models and Conceptual Scenarios for Runoff Generation ..388
10.8 A Modified SCS-CN Model ..390
10.8.1 A Basic Semi-Empirical Formula for Runoff Calculation ..390
10.8.2 Basic Relationships for Flow Characteristics392
10.8.3 Concentration Response Function ...393
10.8.4 Illustrative Examples ...394
References ...402

11 Unsteady-State Hydrogeological Model of Evaporation-Induced Sedimentation in a Surface Reservoir ..405
11.1 Problem Formulation ..405
11.2 Basic Balance Equation ...407
11.2.1 The Case of $C_1 < C^*_1$...407
11.2.2 The Case of $C_1 \geq C^*_1$...409
11.3 Numerical Solutions of the Problem and Their Analysis410
References ...413

Part V Variable-Density Flow and Solute Transport: Physical Phenomena and Mathematical Formulation

12 Dynamic Equilibrium of Freshwater–Saltwater Interface417
12.1 Basic Steady-State Models ...417
12.1.1 Interface Between Two Immiscible Liquids in Equilibrium417
12.1.2 Ghyben–Herzberg Relation (Approximation)419
12.2 Approximate Solutions of the Problem of the Shape of the Seawater–Fresh Groundwater Interface421
12.2.1 A Confined Coastal Aquifer ..421
12.2.2 A Leaky Confined Coastal Aquifer ...423
12.2.3 A Phreatic Coastal Aquifer Under Recharge Conditions426
12.2.4 Freshwater Lens on an Elongated Oceanic Island427
12.3 Equilibrium for Saltwater Upconing Beneath a Partially Penetrating Well ..429
12.3.1 Problem Setting and Analysis of Existing Approaches and Solutions ..430
12.3.2 Analytical Solutions for the Critical Pumping Rate and the Critical Interface Rise432
References ...436

13 Dynamics of Saltwater–Freshwater Interface439
13.1 Two-Dimensional Profile Models for Immiscible Fluids Interface Displacement ..439
13.1.1 Linear Displacement ...440
13.1.2 Radial Displacement ...447
13.2 Application of Two-Phase Flow Approach for Brine Transport in Porous Media Description 453
13.2.1 Physical and Mathematical Basis 453
13.2.2 Properties of Particular Solutions 455
References ... 460

14 Studying Subsurface Density-Induced Phenomena Using Numerical Modeling .. 463
14.1 On Physical Approaches to Mathematical Programming Formalism ... 464
14.2 Brine Migration in Idealized Aquifer Systems 468
14.2.1 Numerical Simulators’ Performance Capabilities and Their Testing ... 468
14.2.2 Physical Phenomena Analysis for Migration of a Brine Released from a Surface Reservoir 473
14.2.3 Solute Concentration in a Pumping Well Affected by Saltwater–Freshwater Interface Upconing 481
References ... 489

Part VI Case Histories of Subsurface Contamination by Industrial and Environmental Brines: Field Data Analysis and Modeling of Migration Processes

15 Radioactive Brine Migration at the Lake Karachai Site (South Urals, Russian Federation) .. 495
15.1 Introduction Remarks .. 495
15.2 Hydrogeological Setting and General Description of the Migration Process ... 498
15.3 Groundwater Contamination Plume 500
15.3.1 A Structure of Groundwater Flow at the Site 500
15.3.2 The Distribution of the Radionuclides and Principal Ions Within Contamination Plume 501
15.4 Overview of Modeling Analysis Approach 508
15.5 Model Setup and Calibration ... 509
15.5.1 Model Design ... 510
15.5.2 Sharp-Interface Approach 511
15.5.3 Fully Miscible Transport Modeling Approach 513
15.5.4 Brine Plume Simulation and Prediction 515
References ... 517

16 Modeling of Seawater Intrusion in Coastal Area of River Andarax Delta (Almeria, Spain) .. 519
16.1 Study Area .. 519
16.1.1 Brief Geological Description of the Site 520
16.1.2 Hydrogeological Setting .. 521
16.2 Groundwater Salinization ..523
 16.2.1 Spatial and Temporal Changes in Groundwater Quality523
 16.2.2 Major Results of Vertical Electrical Soundings526
16.3 Conceptualization and Model Design of Seawater Intrusion Process ...527
16.4 Modeling Results ..530
References ..534

17.1 A Brief Description of the Geological and Hydrological Structure of the Site, Drainage Measures and Groundwater Regime Disturbed by Mining Operations536
 17.1.1 Hydrogeological Units ...537
 17.1.2 Drainage of the Open Pit Mine537
 17.1.3 Vertical Hydrogeochemical Stratification of the Groundwater System and Temporal Changes in Groundwater Quality ...538
17.2 Analytical Assessments ..539
17.3 Numerical Modeling ...541
 17.3.1 Process Conceptualization and Model Design542
 17.3.2 Modeling Results ..542
 17.3.3 Experimental Verification ..543
References ..544

18 Light Wastewater Injection into a Deep Geological Formation Containing Brine (“Volzhsky Orgsintez” Deep-Well Disposal Site, Central Russia Region)545
18.1 Hydrogeological Characteristics and Setting of the Geological Environment ..545
 18.1.1 Available Field Data ...545
 18.1.2 Conceptualization of the Hydrogeological Setting and Model Description ..551
18.2 The Concept and Technique of Numerical Analysis552
18.3 Numerical Solution of a Groundwater Transport Problem554
References ..556

Part VII Physicochemical Description and Mathematical Formulation of Sorption Processes

19 Conceptual Models for Sorption Under Batch Conditions561
 19.1 Sorption Equilibrium ...561
 19.1.1 Principal Sorption Isotherms ...561
19.1.2 Principal Factors Affecting the Experimental Isotherm Data ...564
19.1.3 Hysteresis Phenomenon in Sorption566
19.2 Models of Sorption/Desorption Kinetics571
19.2.1 Sorption Kinetics ...572
19.2.2 A Generalized Nonequilibrium Sorption Model572
19.3 Models for Static (Batch) Sorption Experiments573
19.3.1 Mass Balance in a Batch Experiment573
19.3.2 One-Site Kinetic Model of Sorption with Concomitant Mineral Dissolution574
References ..580

20 Conceptual Transport Models for Adsorbable Solutes585
20.1 Equilibrium Sorption in Groundwater Flow585
20.1.1 Effective Transfer Parameters for Equilibrium Reversible Sorption ..585
20.1.2 The Influence of Nonlinear Sorption on Advective–Dispersive Solute Transport590
20.1.3 The Influence of Nonlinear Sorption on Advective Transport of a Decayed Component594
20.1.4 The Influence of Sorption Hysteresis on Concentration Front Displacement598
20.1.5 On Incorporation of a Geochemical Phenomenon into a Radionuclide Transport Model602
20.2 Nonequilibrium Sorption ..607
20.2.1 A Fundamental Solution for Linear Sorption607
20.2.2 Asymptotic Solution of the Problem of Nonlinear Sorption Kinetics ..610
20.2.3 A Numerical Model of an Adsorbable Component Transport in Porous Media with Discrete Sorption Sites ..612
References ..613

Part VIII Experimental and Modeling Study of Sorption–Desorption Processes

21 Radon Site for Near-Surface Disposal of Solid RW617
21.1 A General Description of the Groundwater Contamination Process ...617
21.1.1 Hydrogeological Setting ...617
21.1.2 The Causes and Extent of Groundwater Contamination ...618
21.1.3 Dynamics of Groundwater Contamination620
21.2 Variation in Sorption Coefficients and Controlling Factors622
21.2.1 Distribution Coefficients (Linear Model)622
21.2.2 Nonlinear Freundlich Sorption of Co-60626
21.3 Hysteresis in Sorption ..627
 21.3.1 Experiments with Reference Samples of Cambrian Sands ...627
 21.3.2 Model Estimates of the Formation of Concentration Fronts633
21.4 Spatial Variability of Sorption Parameters ...634
 21.4.1 A Review of Published Materials ...634
 21.4.2 Spatial Variability of Nonlinear Sorption Parameters for Sr-90 ...636
References ..644

 22.1 Introduction Remarks ..647
 22.2 The Structure, Chemical and Mineral Composition, and the Physical Properties of the Clays ...649
 22.3 Rock Mechanical and Hydraulic Properties ...652
 22.4 Variations in Physical and Mechanical Properties over Depth ...653
 22.5 A Comparative Analysis of the Clay Formations ...657
 22.6 Sorption–Desorption Experiments (Vkt Clay) ...658
 22.6.1 Sorption ...658
 22.6.2 Desorption ..660
 22.7 Diffusion Experiments ...662
 22.7.1 Single-Chamber Diffusion Cell (In/Out-Diffusion) Tests with Packing Cambrian Clay662
 22.7.2 Single-Chamber Diffusion Cell Tests with Undisturbed Vendian Clay Samples669
 22.7.3 A 3D Diffusion Test with a Cambrian Clay Sample of Natural Structure672
 22.7.4 A Comparative Analysis677
References ..679

23 Tomsk-7 and Krasnoyarsk-26 Sites for Deep-Well Injection Radioactive Waste Disposal, and Lake Karachi Site of Near-Surface Disposal of Radioactive Brine ..681
 23.1 Nonideal Behavior of Sorption Curves Observed in Batch Tests with Core Material from the Tomsk-7 Site ...681
 23.1.1 Materials, Methods, and Experimental Series ...682
 23.1.2 Results: Qualitative Analysis ...684
 23.1.3 Modeling Results and Discussion ...694
 23.1.4 On the Direction of Processes Under Extremely High Temperatures698
23.2 The Influence of Mineral Transformation of Aquifer Matrix on Radionuclide Sorption in Batch Tests with Core Material from the Krasnoyarsk-26 Site 701
23.2.1 General Information .. 701
23.2.2 Experimental Setup and Analysis of the Major Results 702
23.3 Radionuclide Sorption onto Fresh Fractures of Volcanogenic Metamorphized Rocks from the Lake Karachai Site .. 706
23.3.1 Samples and Experimental Setup 707
23.3.2 Sorption Parameters .. 708
23.3.3 Hysteresis in Sorption .. 709
References .. 710

Part IX Colloid-Facilitated Solute Transport in Aquifers

24 Colloidal Systems and Equilibrium in Such Systems 715
24.1 General Views on Colloids and Their Genesis 715
24.2 Properties of Colloidal Systems .. 719
24.2.1 Stability of Colloidal System 719
24.2.2 Mobility and Accumulation of Colloids in the Porous Media .. 722
24.3 Sorption of Chemical Species onto Colloids (Under Batch Conditions) .. 724
24.3.1 Basic Reactions .. 724
24.3.2 Governing Equations for Sorption Equilibrium 726
24.3.3 Sorption Kinetics and Some Experimental Data 727
24.4 Subsurface Behavior of Actinides at Existing and Proposed RW Disposal Sites .. 731
24.4.1 Sites Where Pu and Some Other Actinides Have Been Detected in the Environment 731
24.4.2 Designed and Engineered Repositories for RW Disposal .. 733
References .. 735

25 Experimental Study of Radionuclide Interaction with Colloids with Respect to Tomsk-7 Deep-Well RW Disposal in a Geological Formation ... 739
25.1 A Study of Sorption of Plutonium on Colloids in Ultrafiltration Experiments with Synthesized Solutions 739
25.1.1 Experimental Setup .. 739
25.1.2 Interpretation of Experimental Results 743
25.2 A Study of Colloidal Forms of Radionuclide Migration at a Radioactive Waste Disposal Site 750
25.2.1 Experimental Setup .. 750
25.2.2 Calculation Algorithm and Obtained Parameter Values .. 752
Reference ... 754
Contents

26 Models of Sorption Type for Colloid-Facilitated Transport in Aquifers ... 755
 26.1 The Governing Equations for Migration of Colloidal Solutions … 755
 26.1.1 A Dual-Species Model ... 755
 26.1.2 Transport of a Polydisperse Colloidal Solution 757
 26.2 A Model with Effective Parameters 758
 26.2.1 Equilibrium Reversible Sorption 758
 26.2.2 Irreversible Sorption .. 760
 26.3 Numerical Modeling and Illustrative Examples 761
 26.3.1 Introduction Comments ... 761
 26.3.2 Equilibrium Sorption ... 763
 26.3.3 The Influence of Sorption Kinetics 767
References .. 769

27 A Thermodynamics-Based Conceptual Model for
Colloid-Facilitated Solute Transport ... 771
 27.1 Surface Complexation Models (Static Formulation) 771
 27.2 On Modeling Approach for Multicomponent Solute Transport…… 778
 27.2.1 Tests and Illustrative Examples 779
 27.2.2 Sample Problems and Analysis of Migration Process 781
 27.3 A Conceptual Model for the Subsurface Transport of Plutonium on Colloidal Particles Involving Surface Complexation Reactions .. 784
 27.3.1 The Basic Chemistry of Plutonium 784
 27.3.2 Examples of Modeling Assessments for Migration of the Sodium Nitrate Solution Containing Pu(IV) and Colloids .. 793
References .. 797

Conclusion ... 801

Index .. 803
Subsurface Solute Transport Models and Case Histories
With Applications to Radionuclide Migration
Rumynin, V.G.
2011, XXI, 815 p. 309 illus., Hardcover