Contents

Durability of Strain-hardening Fibre-reinforced Cement-based Composites (SHCC) – State-of-the-art

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xi</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Gideon P.A.G. van Zijl and Folker H. Wittmann</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Strain-hardening Cement-based Composites (SHCC)</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Classification and Scope</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Fundamentals of Durability Design for SHCC</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Crack Control as Durability Measure</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Report Layout</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>7</td>
</tr>
<tr>
<td>2 Durability under Mechanical Load – Micro-crack Formation (Ductility)</td>
<td>9</td>
</tr>
<tr>
<td>Gideon P.A.G. van Zijl</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Introductory Remarks</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Ductility as Compared with the Sum of Possibly Imposed Strains</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Average and Maximal Opening of Micro-cracks during Strain-hardening</td>
<td>11</td>
</tr>
<tr>
<td>2.3.1 Crack Width Evolution with Tensile Strain</td>
<td>13</td>
</tr>
<tr>
<td>2.3.2 Fibre Volume</td>
<td>13</td>
</tr>
<tr>
<td>2.3.3 Fibre Bond Strength</td>
<td>14</td>
</tr>
<tr>
<td>2.3.4 Influence of Matrix Composition</td>
<td>15</td>
</tr>
<tr>
<td>2.3.5 Age at Loading, Curing</td>
<td>17</td>
</tr>
<tr>
<td>2.3.6 Crack Formation in Shear</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Width of Micro-cracks in Loaded and Unloaded Specimens</td>
<td>21</td>
</tr>
<tr>
<td>2.5 Influence of Crack Width of Micro-cracks on Permeability and Capillary Suction</td>
<td>22</td>
</tr>
<tr>
<td>2.5.1 Water Permeability</td>
<td>23</td>
</tr>
<tr>
<td>2.5.2 Gas Permeability</td>
<td>24</td>
</tr>
</tbody>
</table>
3 Durability under Chemical Loads .. 41
Byung H. Oh and Petr Kabele
3.1 Introduction ... 41
3.2 Chloride Environments ... 42
3.2.1 Chloride Penetration: Corrosion Protection of Reinforcement in Concrete ... 42
3.2.2 Effects on Micromechanical Properties 44
3.2.3 Self-healing and Effects on Performance in Uniaxial Tension ... 46
3.3 Hydrolysis and Leaching ... 47
3.3.1 Effects on the Fibre-matrix Interfacial Transition Zone . 47
3.3.2 Effects on Micromechanical Properties 49
3.4 Hot and Humid Environments 50
3.5 Alkali Environments .. 51
3.6 Resistance with Respect to Sulphate Attack 53
3.7 Alkali-aggregate Reaction .. 54
3.8 Conclusions .. 56
References .. 57

4 Durability under Thermal Loads 59
Romildo D. Toledo Filho, Eduardo M.R. Fairbairn, and Volker Slowik
4.1 Introduction .. 59
4.2 Behaviour at Elevated Temperatures 60
4.3 Thermal Cracking at Early Age 62
4.4 Frost Resistance and Action of De-icing Salts 64
4.4.1 SHCC Freeze-thaw and De-icing Resistance as Tested According to ASTM .. 64
4.4.2 SHCC Freeze-thaw and De-icing Resistance as Tested with the RILEM TC-117 Procedure 66
4.5 Concluding Remarks .. 69
References .. 70

5 Durability under Combined Loads 73
Folker H. Wittmann
5.1 Introduction .. 73
5.2 Imposed Strain and Penetration of Aggressive Compounds 75
5.3 Frost Action and Permeability 77
5.4 Hydrolysis and Ultimate Strain Capacity 77
5.5 Mechanical Load and Alkaline Environment 77
Contents

5.6 Conclusions .. 78
References .. 78

6 Durability of Fibres ... 81
Atsuhisa Ogawa and Hideki Hoshiro
6.1 Introduction ... 81
6.2 Typical Properties of Fibres 82
6.3 Durability of PVA Fibre 82
 6.3.1 Accelerated Test in Alkaline Environment 82
 6.3.2 Accelerated Tests in Chemical Exposure 84
6.4 Durability of PVA Fibre-reinforced Cement-based Composites . . . 85
6.5 Conclusions ... 88
References .. 88

7 Durability of Structural Elements and Structures 89
Viktor Mechtcherine and Frank Altmann
7.1 General Remarks .. 89
7.2 Characteristic Mechanical, Environmental, and Combined Loads . 90
7.3 Basics for the Durability Design 93
 7.3.1 General Remarks 93
 7.3.2 Protection of Steel Reinforcement from Corrosion .. 93
 7.3.3 Durability of the SHCC Matrix 95
 7.3.4 Fibre Durability 95
 7.3.5 Fibre-matrix Bond Durability 96
7.4 Characteristic Material Properties to Predict Long-term Durability and Service Life 96
 7.4.1 General Remarks 96
 7.4.2 Transport Properties 97
 7.4.3 Strain Capacity of SHCC 98
 7.4.4 Resistance of SHCC in Aggressive Environments ..100
 7.4.5 Size Effect100
7.5 Examples ..102
 7.5.1 General Remarks102
 7.5.2 Patch Repair of Bridge Deck; Michigan, USA102
 7.5.3 Surface Repair of Retaining Wall; Japan104
7.6 Summary and Conclusions107
References ..108

8 Durability, Economical, Ecological, and Social Aspects: Life-cycle Considerations 113
Michael D. Lepech
8.1 Introduction ...113
8.2 Life-cycle Impacts and Costs versus Initial Costs and Impacts of Construction115
8.3 Raw Material Recycling117
8.4 Sustainability ..121
8.5 Conclusions and Future Research 128
References ... 129

Key Words Index .. 133
Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC)
van Zijl, G.P.A.G.; Wittman, F.H. (Eds.)
2011, XII, 140 p., Hardcover
ISBN: 978-94-007-0337-7