Contents

1 Modern Electrical Drives: An Overview 1
 1.1 Introduction ... 1
 1.2 Drive Technology Trends 3
 1.2.1 Electrical Machines 3
 1.2.2 Power Converters 6
 1.2.3 Embedded Control and Communication Links 8
 1.3 Drive Design Methodology 11
 1.4 Experimental Setup..................................... 13

2 Modulation Techniques for Power Electronic Converters 17
 2.1 Introduction ... 17
 2.2 Single-Phase Half-Bridge Converter 19
 2.3 Single-Phase Full-Bridge Converter 23
 2.4 Three-Phase Converter 28
 2.4.1 Space Vector Modulation 33
 2.5 Dead-Time Effects 38
 2.6 Tutorials ... 41
 2.6.1 Tutorial 1: Half-Bridge Converter with Pulse Width Modulation 41
 2.6.2 Tutorial 2: Half-Bridge Converter with PWM and Dead-Time Effects 43
 2.6.3 Tutorial 3: Full-Bridge Converter with Pulse Width Modulation 45
 2.6.4 Tutorial 4: Three-Phase Pulse Width Modulator with Pulse Centering 47
 2.6.5 Tutorial 5: Three-Phase Converter with Pulse Width Modulator 49
 2.6.6 Tutorial 6: Three-Phase Simplified Converter without PWM 51
3 Current Control of Generalized Load

3.1 Current Control of Single-Phase Load 55
 3.1.1 Hysteresis Current Control 55
 3.1.2 Model Based Current Control 58
 3.1.3 Augmented Model Based Current Control 63

3.2 Current Control of a Three-Phase Load 64
 3.2.1 Three-Phase Hysteresis Current Control 67
 3.2.2 Model Based Three-Phase Current Control 73
 3.2.3 Augmented Three-Phase Model Based Current Control 80
 3.2.4 Frequency Spectrum of Hysteresis and Model Based Current Controllers 81

3.3 Tutorials .. 83
 3.3.1 Tutorial 1: Single-Phase Hysteresis Current Control ... 83
 3.3.2 Tutorial 2: Single-Phase Model Based Current Control 84
 3.3.3 Tutorial 3: Three-Phase Box Method Type Hysteresis Current Control 86
 3.3.4 Tutorial 4: Three-Phase Model Based Current Control 89
 3.3.5 Tutorial 5: Three-Phase Model Based Current Control without PWM, Using Simplified Approach . 92

4 Drive Principles ... 95

4.1 ITF and IRTF Concepts 95
4.2 Electromagnetic Torque Control Principles 100
 4.2.1 DC Machine 101
 4.2.2 Synchronous Machine 103
 4.2.3 Induction Machine 106

4.3 Drive Dynamics ... 108
 4.3.1 Linear and Rotational Motion 109
 4.3.2 Rotational to Translational Transmission 111
 4.3.3 Gear Transmission 113
 4.3.4 Dynamic Model of a Drive Train 115

4.4 Shaft Speed Control Loop Design Principles 117

4.5 Tutorials .. 122
 4.5.1 Tutorial 1: Elementary Synchronous Drive 122
 4.5.2 Tutorial 2: Elementary Asynchronous (Induction) Drive .. 123
 4.5.3 Tutorial 3: Elementary DC Drive 125
 4.5.4 Tutorial 4: Drive Dynamics Example 126
 4.5.5 Tutorial 5: Speed Control Loop Design Example ... 127

5 Modeling and Control of DC Machines 131

5.1 Separately Excited, Current-Controlled DC Machine 132
 5.1.1 Symbolic Model of the DC Machine 133
 5.1.2 Generic Model DC Machine 135

5.2 Field-Oriented Machine Model 135
5.3 Control of Separately Excited DC Machines 138
 5.3.1 Controller Concept .. 138
 5.3.2 Operational Drive Boundaries 139
 5.3.3 Use of Current Source IRTF Based Model 146
 5.3.4 Use of a Voltage Source with a Model Based Current
 Control ... 147
5.4 Tutorials .. 150
 5.4.1 Tutorial 1: Current Source Model of a Brushed DC
 Machine with Segmented Commutation Module 150
 5.4.2 Tutorial 2: Modeling of a Current and Voltage Source
 Connected Brushed DC Motor ... 152
 5.4.3 Tutorial 3: Current Source Connected Brushed DC
 Motor with Field Weakening Controller 154
 5.4.4 Tutorial 4: DC Drive Operating under Model Based
 Current Control and a Field Weakening Controller 157
 5.4.5 Tutorial 5: DC Drive with Model Based Current
 Control and Shaft Speed Control Loop 159
 5.4.6 Tutorial 6: Experimental Results of DC Machine 161

6 Synchronous Machine Modeling Concepts 165
 6.1 Non-salient Machine .. 165
 6.1.1 Symbolic Model of a Non-salient Machine 166
 6.1.2 Generic Model .. 167
 6.1.3 Rotor-Oriented Model: Non-salient Synchronous
 Machine .. 169
 6.1.4 Steady-State Analysis .. 171
 6.2 Salient Synchronous Machine ... 175
 6.2.1 Generic Model .. 177
 6.2.2 Rotor-Oriented Model of the Salient Synchronous
 Machine .. 178
 6.2.3 Steady-State Analysis .. 180
6.3 Tutorials ... 184
 6.3.1 Tutorial 1: Dynamic Model of a Non-salient
 Synchronous Machine .. 184
 6.3.2 Tutorial 2: Steady-State Analysis of a Non-salient
 Synchronous Machine .. 186
 6.3.3 Tutorial 3: Stator Flux Linkage Excited Dynamic
 Model of a Synchronous Machine to Demonstrate the
 Rotor Flux Oriented Concept .. 187
 6.3.4 Tutorial 4: Dynamic Model of a Synchronous Machine
 with Adjustable Saliency ... 189
 6.3.5 Tutorial 5: Steady-State Analysis of a Salient
 Synchronous Machine .. 191
7 Control of Synchronous Machine Drives
7.1 Controller Principles
7.2 Control of Non-salient Synchronous Machines
7.2.1 Operation under Drive Limitations
7.2.2 Field Weakening Operation for PM Non-salient Drives
7.2.3 Field Weakening for PM Non-salient Drives, with Constant Stator Flux Linkage Control
7.2.4 Field Weakening for Electrically Excited Non-salient Drive, with Constant Stator Flux and Unity Power Factor Control
7.3 Control of Salient Synchronous Machines
7.4 Field-Oriented Control of a Current-Controlled Synchronous Machine
7.5 Field-Oriented control of a Voltage-Source Connected Synchronous Machine
7.6 Tutorials
7.6.1 Tutorial 1: Non-salient Synchronous Drive
7.6.2 Tutorial 2: Non-salient Synchronous Drive, Constant Stator Flux Operation
7.6.3 Tutorial 3: Non-salient Synchronous Drive, Unity Power Factor Operation
7.6.4 Tutorial 4: Salient Synchronous Drive
7.6.5 Tutorial 5: PM Salient Synchronous Drive with Model Based Current Control
7.6.6 Tutorial 6: Experimental Results of a PM Non-salient Synchronous Drive

8 Induction Machine Modeling Concepts
8.1 Induction Machine with Squirrel-Cage Rotor
8.2 Zero Leakage Inductance Models of Induction Machines
8.2.1 IRTF Based Model of the Induction Machine
8.2.2 Field-Oriented Model
8.3 Machine Models with Leakage Inductances
8.3.1 Fundamental IRTF Based Model
8.3.2 Universal IRTF Based Model
8.3.2.1 Rotor Flux Based IRTF Model
8.3.2.2 Stator Flux Based IRTF Model
8.3.3 Universal Stationary Frame Oriented Model
8.3.4 Universal Field-Oriented (UFO) Model
8.3.4.1 Rotor Flux Oriented Model
8.3.4.2 Stator Flux Oriented Model
8.3.5 Synchronous Frame Oriented Heyland diagram
8.3.6 Steady-State Analysis
8.4 Parameter Identification and Estimates
8.5 Single-Phase Induction Machines
8.5.1 Steady-State Analysis of Capacitor-Run Single-Phase Induction Machines .. 277
8.6 Tutorials .. 285
 8.6.1 Tutorial 1: Simplified Induction Machine Model 285
 8.6.2 Tutorial 2: Universal Induction Machine Model 286
 8.6.3 Tutorial 3: Universal Stationary Oriented Induction Machine Model 288
 8.6.4 Tutorial 4: Current Controlled Zero Leakage Flux Oriented Machine Model 289
 8.6.5 Tutorial 5: Current Controlled Universal Field Oriented (UFO) Model 291
 8.6.6 Tutorial 6: Parameter Estimation Using Name Plate Data and Known Stator Resistance 292
 8.6.7 Tutorial 7: Grid Connected Induction Machine 294
 8.6.8 Tutorial 8: Steady State Characteristics, Grid Connected Induction Machine 296
 8.6.9 Tutorial 9: Grid Connected Single-Phase Induction Machine .. 297

9 Control of Induction Machine Drives ... 303
 9.1 Voltage-to-Frequency (V/f) Control ... 303
 9.1.1 Simple V/f Speed Controller ... 305
 9.1.2 V/f Torque Controller with Shaft Speed Sensor .. 309
 9.2 Field-Oriented Control ... 311
 9.2.1 Controller Principle .. 312
 9.2.2 Controller Structure .. 314
 9.2.3 UFO Module Structure .. 315
 9.2.4 IFO Using Measured Shaft Speed or Shaft Angle 316
 9.2.5 DFO with Air-Gap Flux Sensors .. 318
 9.2.6 DFO with Sensor Coils .. 319
 9.2.7 DFO with Voltage and Current Transducers ... 320
 9.2.8 DFO with Current and Shaft Speed Transducers .. 321
 9.3 Operational Drive Boundaries for Rotor Flux Oriented Control .. 323
 9.4 Field Weakening for Rotor Flux Oriented IM Drives ... 327
 9.5 Interfacing FOC with Current-Controlled IM .. 331
 9.6 Interfacing FOC with Voltage-Source-Connected IM .. 333
 9.7 Tutorials .. 337
 9.7.1 Tutorial 1: Simplified V/f Drive ... 337
 9.7.2 Tutorial 2: V/f Drive with Shaft Speed Sensor .. 340
 9.7.3 Tutorial 3: Universal Field-Oriented (UFO) Control with a Current Source Based Machine Model and Known Shaft Angle .. 342
 9.7.4 Tutorial 4: Induction Machine Drive with UFO Controller and Model-Based Current Control 348
Advanced Electrical Drives
Analysis, Modeling, Control
De Doncker, R.; Pulle, D.W.J.; Veltman, A.
2011, XVIII, 462 p. 343 illus. in color. With online files/update., Hardcover
ISBN: 978-94-007-0179-3