PREFACE

The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra high temperature ceramics, thermoelectric, and armor. Novel biological and chemical sensors made of stiff and light weight boron-rich solids are very exciting and efficient for application in medical diagnoses, environmental surveillance and pathogen and biological/chemical terrorism agent detection. Ultra high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicles’ application. Boron-rich solids are also promising candidates for high temperature thermoelectric conversion. Armor is another very important application of boron-rich solids since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact.

The following topic areas are presented:

- boron rich solids: science and technology;
- synthesis and sintering strategies of boron rich solids;
- microcantilever sensors;
- screening of the possible boron based thermoelectric conversion materials;
- ultra high temperature ZrB₂ and HfB₂ based composites
- magnetic, transport and high-pressure properties of boron rich solids;
- restrictions of the sensor’s dimensions for chemical detection;
- armor

The members of the International Program Committee of NATO ARW “Boron Rich Solids: Sensors for Biological and Chemical Detection, Ultra-High Temperature Composites, Thermoelectrics, Armor” were Nina Orlovskaya (UCF, USA), Mykola Lugovy (IPMS, Ukraine), Lynnette Madsen (NSF, USA), Jay Kapat (UCF, USA), Masa Ishigami (UCF, USA), Richard Blair (UCF, USA), Marcel Ilie (UCF, USA), Seetha Raghavan (UCF, USA), Ghatu Subhash (UF, USA), and Jean-Francois Halet (University of Rennes, France).

Nina Orlovskaya, Mykola Lugovy
Co-Directors, NATO ARW
Boron Rich Solids
Sensors, Ultra High Temperature Ceramics, Thermoelectrics, Armor
Orlovskaya, N.; Lugovy, M. (Eds.)
2011, XVIII, 330 p., Hardcover