Contents

1 General Ideas of Mass Transfer Processes in Critical Regimes ... 1
 1.1 Granulometric Characteristics of Bulk Material 1
 1.2 Distribution of Different Fractions in the Process of Separation 5
 1.3 Fractional Separation Curves and Their Properties 7
 1.3.1 Initial Composition .. 10
 1.3.2 Solid Phase Concentration in the Flow 11
 1.3.3 Process Stability ... 13
 1.3.4 Flow Velocity and Particle Size 13

2 Principles of Modeling Processes in Moving Media 19
 2.1 Correlation Between a Full-Scale Process and Its Model 19
 2.2 Mathematical Models Construction 21
 2.3 Similarity Criteria Determination 26

3 System of Particles of the Same Size Class in a Critical Flow 33
 3.1 Dynamics of Mass Motion of Particles in a Flow 33
 3.2 Definition of a Statistical System 38
 3.3 Estimation of the State of a Statistical System 44
 3.4 Principal Statistical Characteristics of the Separation Factor 53

4 System of Particles of Several Size Classes 59
 4.1 Interaction of Particles in a Flow 59
 4.2 Forces Caused by Interactions of Particles of Various Classes 64
 4.3 Two-Phase Flow Entropy in Critical Flow Regimes 67
 4.4 Main Features of Entropy in Critical Regimes 73
 4.5 Mobility Factor ... 81
 4.6 Statistical Identities .. 86
5 Principal Statistical Relations of Mass Transfer in Critical Flow ... 93
5.1 Mass Exchange Between the Zone and the Apparatus 93
5.2 Determination of Average Values ... 96
5.3 Cell and Apparatus, Entropy .. 98
5.4 Separation at Low Concentrations ... 100
5.5 General Regularities for the Zone ... 104

6 Correlation Between the Apparatus and the Cell 107
6.1 Coarse Particles Separation ... 107
6.2 Fine Particles Separation .. 108
6.3 Definition of Mass Transfer Parameters 109
6.4 Cellular Model of Separation .. 114
6.5 Physical Meaning of Separation Factors 118
 6.5.1 Chaotizing Factor .. 118
 6.5.2 Flow Mobility .. 118
 6.5.3 Separation Factor .. 118
 6.5.4 Concentration Effect .. 119
 6.5.5 Potential Extraction .. 121
6.6 Extraction from a Cell Located in the Zone 122

7 Structural Model of Mass Transfer in Critical Regimes
 of Two-Phase Flows ... 125
 7.1 Validation of the Distribution Coefficient 125
 7.2 Physical Meaning of the Distribution Coefficient 127
 7.2.1 Turbulent Overflow of Particles and Turbulent Regime of
 the Medium Motion in the Apparatus 132
 7.2.2 Laminar Overflow Regime .. 134
 7.2.3 Intermediate Regime of Overflow 135
 7.3 Analysis of Distribution Coefficient 136
 7.4 Analysis of Experimental Dependencies from the
 Standpoint of Structural Models 141
 7.5 Check of the Structural Model Adequacy 147
 7.6 Correlation Between the Structural and Cellular Models
 of the Process .. 151

8 Correlation Between Statistical and Empirical Results 153
 8.1 Approximation of Universal Separation Curve 153
 8.2 Principal Separation Parameters Depending on the Apparatus Height
 .. 156
 8.3 Equal Extractability of Various Size Classes 160

9 Entropy of Composition: Optimization Criterion 169
 9.1 Entropy and Particles Stratification 169
 9.2 Evaluation of Heterogeneity of Powder Composition 173
9.3 Binary Separation ... 175
9.4 Multi-product Separation ... 176
9.5 Algorithms of Optimization of Separation into n Components .. 177
 9.5.1 Algorithm 1: Complete Sorting-Out 178
 9.5.2 Algorithm 2: Greedy Algorithm 178
 9.5.3 Optimization of Separation into Four Components 180
9.6 Mathematical Model of Separation into n Components 186
9.7 Optimum Conditions for Binary Separation 187
9.8 Optimum Conditions for Multi-Product Separation 189

10 Stability and Kinetic Aspects of Mass Distribution in Critical Regimes ... 197
 10.1 Entropy Stability .. 197
 10.2 Particles Distribution over the Channel Height 204
 10.3 Velocity Distribution of Particles of a Narrow Size Class 208
 10.4 Kinetic Aspect of the Material Distribution 210

11 Critical Regimes of Two-Phase Flows in Complicated Systems ... 215
 11.1 Problem Setting .. 215
 11.2 Mathematical Model of a Duplex Cascade 216
 11.3 Mathematical Model of a Cascade Process Allowing Control of the Effect of the Material Feed Site on Separation Results ... 220
 11.4 Cascade Model with Two or More Material Inputs into the Apparatus ... 223
 11.5 Combined Cascade Classifiers 225
 11.5.1 Combined Cascades of $n(z)$ Type 225
 11.5.2 Working Schemes for Combined Cascades of $n(z)$ Type ... 227
 11.5.3 Connection Functions for Combined Cascades 229
 11.5.4 Experimental Verification of the Adequacy of Mathematical Models of Combined Cascades 234
 11.6 Quality Criterion for Combined Cascades 237
 11.7 Fractal Principle of the Construction of Schemes of Combined Classifiers .. 241
 11.7.1 Fractal Principle of Combination 241
 11.7.2 Progressive Nature of Multi-element Apparatuses 244
 11.7.3 Combined Scheme with Successive Recirculation of Both Products ... 246
 11.7.4 Combined Cascade with an Alternating Bypass of Both Products ... 247
 11.7.5 On the Potential of Fractal Combined Schemes 252
11.8 Some Methods of Combined Schemes Optimization 255
11.8.1 Multi-row Classifier ... 255
11.8.2 Method of Estimating a Multi-row Classifier 258
11.8.3 Optimal Scheme of a Multi-row Industrial Classifier ... 260

12 Stochastic Model of Critical Regimes of Two-Phase Flows 265
12.1 Principal Definitions .. 265
12.2 Statistical Description of Gravitational Separation in Turbulent Flows .. 267
12.3 Equations of Particles Motion Taking into Account Their Rotation Around the Center of Mass in a Turbulent Flow ... 271
12.4 Description of One-Dimensional Stationary Process of Gravitation Separation in a Turbulent Flow 274
12.5 One-Dimensional Model of a Non-stationary Process 278
12.6 Statistical Equations of a Random Process of Gravitational Separation ... 278
12.7 Computation of Fractional Separation of a Narrow Class 281
12.8 Approximate Computation Method 283

13 Mass Transfer in Critical Regimes of Two-Phase Flows 287
13.1 Mathematical Model of a Separating Cascade 287
13.2 Discrete Stationary Model of Critical Regimes of Vertical Two-Phase Flows ... 305
13.3 Optimization of Principal Parameters of Multi-stage Separation ... 319

14 Universal Curves Criteria ... 333
14.1 Substantiation of the Curves Universality 333
14.2 Generalizing Criteria ... 337
14.2.1 Turbulent Regimes of Particles Overflow 340
14.2.2 Laminar Regimes of Particles Overflow 342
14.3 Universal Curves ... 344

Bibliography ... 345
Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase
Barsky, E.
2010, XVI, 348 p., Hardcover