Contents

1 Introduction ... 1

1.1 Applied Time Series Analysis ... 2
 1.1.1 Basic Definitions .. 2
 1.1.2 Basic Applied Time Series Models .. 2
 1.1.3 Frequency Domain Models .. 2

1.2 Advances in Innovative Computing Paradigms ... 3
 1.2.1 Computing Algorithms and Databases ... 3
 1.2.2 Integration of Hardware, Systems and Networks 3
 1.2.3 Internet, Web and Grid Computing .. 4
 1.2.4 Visualization, Design and Communication .. 4

 1.3.1 Developing Innovative Computing Algorithms for Business Time Series ... 5
 1.3.2 Developing Innovative Computing Algorithms for Biological Time Series ... 6
 1.3.3 Developing Innovative Computing Algorithms for Astronomical Time Series ... 6

2 Applied Time Series Analysis ... 9

 2.1 Basic Characteristics of Time Series ... 10
 2.1.1 Estimation of Correlation .. 10
 2.1.2 Stationary Time Series ... 12
 2.1.3 Smoothing of the Time Series .. 12
 2.1.4 Periodogram Analysis ... 13

 2.2 Autoregression and ARIMA Models ... 14
 2.2.1 Time Series Regression ... 14
 2.2.2 Autoregressive Moving Average Models ... 14
 2.2.3 Building ARIMA Models ... 15
 2.2.4 Forecasting and Evaluation ... 16
 2.2.5 Causality of the Time Series .. 16

 2.3 Mathematical Models in the Frequency Domain ... 17
 2.3.1 Introduction ... 17
2.3.2 Discrimination Analysis ... 18
2.3.3 Clustering Analysis ... 19
2.3.4 Principal Components and Factor Analysis 21
2.3.5 Dynamic Fourier Analysis ... 22
2.3.6 Random Coefficient Regression .. 23
2.3.7 Discrete Fourier Transform ... 24

3 Advances in Innovative Computing Paradigms .. 25
3.1 Research Advances in Computing Algorithms and Databases 25
 3.1.1 Knowledge Extraction Methods .. 25
 3.1.2 Exploiting Large Complex Databases 26
 3.1.3 Neural Computing Algorithms ... 26
 3.1.4 Fuzzy Computing Algorithms ... 27
 3.1.5 Evolutionary Computing Algorithms 27
 3.1.6 Quantum Computing Algorithms 28
 3.1.7 Swarm-Based Computing Algorithms 28
 3.1.8 DNA Computing Algorithms ... 29
 3.1.9 Theoretical Modeling and Simulations 29

3.2 Research Advances in Integration of Hardware, Systems and Networks ... 29
 3.2.1 Innovative Experimental Hardware System 29
 3.2.2 Data-Acquisition Devices .. 30
 3.2.3 Interaction Devices for Visual Exploration 30
 3.2.4 Graphics Processing Units and Co-Processors for Innovative Computing ... 31
 3.2.5 Networking and Interoperability 31
 3.2.6 Code Optimization and Integration 32

3.3 Research Advances in Internet, Web and Grid Computing 32
 3.3.1 Distributed Computation and Data Sharing 32
 3.3.2 Large-Scale Collaborations over the Internet 32
 3.3.3 Grid Computing ... 33
 3.3.4 Pooling of Remote Computer Resources 33
 3.3.5 Integration of Knowledge Metadata Systems 33

3.4 Research Advances in Visualization, Design and Communication ... 34
 3.4.1 Novel Solutions to Visualization and Communication Challenges ... 34
 3.4.2 Displaying of Complex Information 34
 3.4.3 Escaping Flatland .. 35
 3.4.4 Systems Integration for High Performance Image Processing ... 35
 3.4.5 Representation of Uncertainties .. 36
 3.4.6 Informative Graphics for Scientific Communication 36

3.5 Advances and Applications for Time Series Problems 37
 3.5.1 Efficient Retrieval of Similar Time Series 37
3.5.2 Automatic Classification of Time Series Sequences 37
3.5.3 Time Warping Algorithms ... 38
3.5.4 Time Frequency Clustering of Time Series Datasets 40
3.5.5 Enhanced Representation for Complex Time Series 40
3.5.6 Automatic Monitoring of Large and Complex
 Time Series .. 41
3.6 An Illustrative Example of Building an Innovative
 Computing Algorithm for Simulated Time Series............... 41
3.6.1 Description of the Simulated Time Series Problem 41
3.6.2 Background of the Methodology ... 42
3.6.3 Building the Innovative Regression Model 44
3.6.4 Experimental Results with the Simulated Time Series 48
3.6.5 Discussions and Further Works.. 50

4 Real-Word Application I: Developing Innovative
 Computing Algorithms for Business Time Series 51
4.1 Business Time Series ... 51
4.2 Advances in Business Forecasting... 52
 4.2.1 Basic Econometrics Models... 52
 4.2.2 Neural Computing Models ... 52
 4.2.3 Evolutionary Computing Models................................. 53
 4.2.4 Hybrid Intelligent Models... 53
4.3 Developing a Hybrid Intelligent Econometrics
 Model for Business Forecasting.. 54
 4.3.1 Vector Autoregression... 54
 4.3.2 Neural Network .. 55
 4.3.3 Genetic Algorithm ... 58
 4.3.4 A Cybernetic Framework of Hybrid Vector
 Autoregression, Neural Network
 and Genetic Algorithm... 60
4.4 Application for Tourism Demand Forecasting 61
 4.4.1 Quantifying Cross-Market Dynamics.............................. 62
 4.4.2 Experimental Results ... 62
4.5 Application for Cross-Market Financial Forecasting 63
 4.5.1 Quantifying the Cybernetic Lead–Lag Dynamics
 across Different Markets ... 64
 4.5.2 Benchmark Stand-Alone Neural Network 64
 4.5.3 Hybrid Innovative System and Results Comparison 65
4.6 Discussions and Further Works.. 66

5 Real-Word Application II: Developing Innovative
 Computing Algorithms for Biological Time Series 67
5.1 Biological Time Series ... 67
5.2 Advances in Experimental Designs for Microarray
 Time Series .. 68
5.2.1 Microarray Experiments .. 68
5.2.2 Microarray Time Series and Applications 69
5.3 Reverse Engineering of Biological Networks............................ 70
 5.3.1 Introduction .. 70
 5.3.2 Materials and Methods... 71
5.4 Models for Biological Network Inference 78
 5.4.1 Biological Time Series Datasets .. 78
 5.4.2 Analysis with Simulated Non-stationary Datasets 79
 5.4.3 Analysis with Real Biological Datasets 79
 5.4.4 Rule Extraction for Reverse Engineering of Biological Networks .. 80
5.5 Discussions and Further Works... 81
 6.1 Astronomical Time Series.. 83
 6.2 Advances and Applications of Innovative Computing Paradigms .. 84
 6.2.1 Classification of Astronomical Time Series 84
 6.2.2 Clustering of Astronomical Time Series 84
 6.2.3 Semi-Supervised Learning for Astronomical Time Series .. 85
 6.2.4 Anomaly Detection of Astronomical Time Series 86
 6.3 Motivations for Investigating the Quasar Time Series with Innovative Approaches .. 86
 6.4 Advances in Emerging Methods for Quasar Studies 87
 6.4.1 Variability Properties of the Quasar Light Curves 87
 6.4.2 Algorithms Based on Variability and Proper Motion for Quasar Classification .. 89
 6.4.3 Bayesian Classification for Efficient Photometric Selection of Quasars .. 93
 6.4.4 Machine Learning Paradigms for Quasar Selection 97
Bibliography .. 99
Applied Time Series Analysis and Innovative Computing
Ao, S.-l.
2010, XIV, 112 p., Hardcover