Contents

1 Background to Research .. 1
 1.1 Introduction .. 1
 1.2 The DFT and Its Efficient Computation 2
 1.3 Twentieth Century Developments of the FFT 4
 1.4 The DHT and Its Relation to the DFT 6
 1.5 Attractions of Computing the Real-Data DFT via the FHT 7
 1.6 Modern Hardware-Based Parallel Computing Technologies 8
 1.7 Hardware-Based Arithmetic Units 9
 1.8 Performance Metrics ... 10
 1.9 Basic Definitions ... 11
 1.10 Organization of the Monograph 12
 References .. 13

2 Fast Solutions to Real-Data Discrete Fourier Transform 15
 2.1 Introduction .. 15
 2.2 Real-Data FFT Algorithms .. 16
 2.2.1 The Bergland Algorithm 16
 2.2.2 The Brunn Algorithm ... 18
 2.3 Real-From-Complex Strategies .. 19
 2.3.1 Computing One Real-Data DFT via One
 Full-Length Complex-Data FFT 20
 2.3.2 Computing Two Real-Data DFTs via One
 Full-Length Complex-Data FFT 20
 2.3.3 Computing One Real-Data DFT via One
 Half-Length Complex-Data FFT 22
 2.4 Data Re-ordering ... 23
 2.5 Discussion .. 24
 References .. 25

3 The Discrete Hartley Transform .. 27
 3.1 Introduction .. 27
 3.2 Normalization of DHT Outputs .. 28
 3.3 Decomposition into Even and Odd Components 29
3.4 Connecting Relations Between DFT and DHT 29
 3.4.1 Real-Data DFT ... 30
 3.4.2 Complex-Data DFT .. 30
3.5 Fundamental Theorems for DFT and DHT 31
 3.5.1 Reversal Theorem .. 32
 3.5.2 Addition Theorem .. 33
 3.5.3 Shift Theorem ... 34
 3.5.4 Convolution Theorem 34
 3.5.5 Product Theorem .. 35
 3.5.6 Autocorrelation Theorem 35
 3.5.7 First Derivative Theorem 35
 3.5.8 Second Derivative Theorem 36
 3.5.9 Summary of Theorems 36
3.6 Fast Solutions to DHT ... 37
3.7 Accuracy Considerations 39
3.8 Discussion ... 39
References .. 40

4 Derivation of the Regularized Fast Hartley Transform 41
 4.1 Introduction .. 41
 4.2 Derivation of the Conventional Radix-4 Butterfly Equations 42
 4.3 Single-to-Double Conversion of the Radix-4 Butterfly Equations 45
 4.4 Radix-4 Factorization of the FHT 46
 4.5 Closed-Form Expression for Generic Radix-4 Double Butterfly 48
 4.5.1 Twelve-Multiplier Version of Generic Double Butterfly 54
 4.5.2 Nine-Multiplier Version of Generic Double Butterfly 54
 4.6 Trigonometric Coefficient Storage, Accession and Generation 56
 4.6.1 Minimum-Arithmetic Addressing Scheme 57
 4.6.2 Minimum-Memory Addressing Scheme 57
 4.6.3 Trigonometric Coefficient Generation via Trigonometric Identities 58
 4.7 Comparative Complexity Analysis with Existing FFT Designs 59
 4.8 Scaling Considerations for Fixed-Point Implementation 61
 4.9 Discussion .. 62
References .. 63

5 Algorithm Design for Hardware-Based Computing Technologies ... 65
 5.1 Introduction .. 65
 5.2 The Fundamental Properties of FPGA and ASIC Devices 66
 5.3 Low-Power Design Techniques 67
 5.3.1 Clock Frequency .. 68
 5.3.2 Silicon Area .. 68
 5.3.3 Switching Frequency 70
 5.4 Proposed Hardware Design Strategy 70
 5.4.1 Scalability of Design 71
6 Derivation of Area-Efficient and Scalable Parallel Architecture 77
6.1 Introduction .. 77
6.2 Single-PE Versus Multi-PE Architectures 78
6.3 Conflict-Free Parallel Memory Addressing Schemes 80
6.3.1 Data Storage and Accession 80
6.3.2 Trigonometric Coefficient Storage, Accession and Generation ... 84
6.4 Design of Pipelined PE for Single-PE Architecture 89
6.4.1 Internal Pipelining of Generic Double Butterfly 90
6.4.2 Space Complexity Considerations 91
6.4.3 Time Complexity Considerations 92
6.5 Performance and Requirements Analysis of FPGA Implementation ... 93
6.6 Constraining Latency Versus Minimizing Update-Time 95
6.7 Discussion .. 97
References .. 98

7 Design of Arithmetic Unit for Resource-Constrained Solution101
7.1 Introduction .. 101
7.2 Accuracy Considerations .. 102
7.3 Fast Multiplier Approach ... 103
7.4 CORDIC Approach .. 104
7.4.1 CORDIC Formulation of Complex Multiplier 104
7.4.2 Parallel Formulation of CORDIC-Based PE 105
7.4.3 Discussion of CORDIC-Based Solution 106
7.4.4 Logic Requirement of CORDIC-Based PE 109
7.5 Comparative Analysis of PE Designs 110
7.6 Discussion .. 112
References .. 115

8 Computation of 2^n-Point Real-Data Discrete Fourier Transform ... 117
8.1 Introduction .. 117
8.2 Computing One DFT via Two Half-Length Regularized FHTs 118
8.2.1 Derivation of 2^n-Point Real-Data FFT Algorithm 119
8.2.2 Implementational Considerations 122
8.3 Computing One DFT via One Double-Length Regularized FHT129
8.3.1 Derivation of 2^n-Point Real-Data FFT Algorithm 129
8.3.2 Implementational Considerations 130
9 Applications of Regularized Fast Hartley Transform

9.1 Introduction ... 135
9.2 Fast Transform-Space Convolution and Correlation 136
9.3 Up-Sampling and Differentiation of Real-Valued Signal 137
 9.3.1 Up-Sampling via Hartley Space 138
 9.3.2 Differentiation via Hartley Space............................... 139
 9.3.3 Combined Up-Sampling and Differentiation 139
9.4 Correlation of Two Arbitrary Signals 140
 9.4.1 Computation of Complex-Data Correlation via Real-Data Correlation .. 141
 9.4.2 Cross-Correlation of Two Finite-Length Data Sets 142
 9.4.3 Auto-Correlation: Finite-Length Against Infinite-Length Data Sets ... 143
 9.4.4 Cross-Correlation: Infinite-Length Against Infinite-Length Data Sets ... 145
 9.4.5 Combining Functions in Hartley Space 147
9.5 Channelization of Real-Valued Signal 149
 9.5.1 Single Channel: Fast Hartley-Space Convolution 149
 9.5.2 Multiple Channels: Conventional Polyphase DFT Filter Bank ... 151
9.6 Discussion .. 155
References .. 156
Appendix B Source Code Listings for Regularized Fast Hartley Transform ..173
 B.1 Listings for Main Program and Signal Generation Routine 173
 B.2 Listings for Pre-processing Functions185
 B.3 Listings for Processing Functions ...189

Glossary ...221

Index ...223
The Regularized Fast Hartley Transform
Optimal Formulation of Real-Data Fast Fourier
Transform for Silicon-Based Implementation in
Resource-Constrained Environments
Jones, K.
2010, XVII, 200 p. With online files/update., Hardcover