Contents

1. **INTRODUCTION**
 1. The pioneers of wireless communication
 2. Evolution of awareness of electromagnetic compatibility
 3. Electromagnetic compatibility of integrated circuits
 4. Scope of this book

2. **BASIC EMC CONCEPTS AT IC LEVEL**
 1. Introduction
 2. Definition of EMC, EMI, EMS and EME
 3. Sources of electromagnetic interference
 4. Electromagnetism versus integrated circuit design
 4.1 Electrical length
 4.2 Near field versus far field
 4.3 Radiation of a conductor
 4.4 Basic EMC antenna concepts
 4.5 Radiated, induced and conducted disturbances
 4.6 Practical example
 5. Intra-chip versus externally-coupled EMC
 6. Analog versus digital integrated circuits
 7. EMC in automotive applications
 8. Immunity measurement methods for IC’s: IEC 62132
3. EMC OF INTEGRATED CIRCUITS VERSUS DISTORTION 37
 1 Introduction 37
 2 Relationship between EMI resisting design and distortion 39
 2.1 Linear distortion 39
 2.2 Nonlinear distortion (rectification) 40
 2.3 Weak and strong nonlinear distortion 43
 3 Case study 1: diode connected NMOS transistor 45
 4 Case study 2: NMOS source follower 50
 5 Case study 3: NMOS current mirror 52
 5.1 Capacitor decoupling the mirror node 57
 5.2 Low-pass $R-C$ filter in the mirror node 58
 5.3 Low-pass $R-C$ filter in the drain of M_1 60
 5.4 EMI resisting (4-transistor) current mirror 61
 5.5 EMI resisting (Wilson totem pole) current mirror 67
 5.6 Comparison of EMI susceptibility of current mirrors 69
 6 Case study 4: EMI susceptibility in ESD protections 72
 6.1 Weak nonlinear distortion in ESD protections 73
 6.2 Strong nonlinear distortion in ESD protections 78
 6.3 ESD protections: general conclusions 80
 7 EMI induced DC shift 81

4. EMI RESISTING ANALOG OUTPUT CIRCUITS 83
 1 Introduction 83
 2 Categorization of analog output structures 85
 2.1 Common-drain output circuits 85
 2.2 Common-source output circuits 88
 2.3 Comparing the electromagnetic susceptibility 89
 2.4 Large EMI amplitudes 93
 3 Case study 1: EMI resisting DC current regulator 95
 3.1 EMI issues in a classic DC current regulator 95
 3.1.1 EMI issues: small signal analysis 97
 3.1.2 EMI issues: large signal analysis 99
 3.1.3 Decoupling capacitor C_d 100
 3.2 DC current regulator with a high immunity to EMI 102
 3.3 Measurements 106
Contents

4 Case study 2: EMI resisting LIN driver 107
4.1 Classic LIN driver 111
4.1.1 Linear operation mode 114
4.1.2 Nonlinear operation mode 116
4.2 EMI resisting LIN driver topology: LIN driver 1 117
4.2.1 EMI path 1 118
4.2.2 EMI path 2 122
4.2.3 Slope control function 129
4.2.4 Measurements 129
4.3 EMI resisting LIN driver topology: LIN driver 2 133
4.3.1 Smart-power mode 133
4.3.2 Slope pumping reduction 136
4.3.3 Measurements 138

5. EMI RESISTING ANALOG INPUT CIRCUITS 141
5.1 Introduction 141
5.2 Case study 1: electromagnetic immunity of CMOS operational amplifiers 142
5.2.1 Asymmetric slew rate 145
5.2.2 Strong nonlinear behavior of the input differential pair 148
5.2.3 Weak nonlinear behavior of the input differential pair 149
5.2.3.1 EMI induced offset in a classic differential pair 149
5.2.3.2 Classic differential pair using source degeneration 154
5.2.3.3 Cross-coupled differential pair 155
5.2.3.4 Differential pair with low-pass R-C filter 158
5.2.3.5 Improved cross-coupled differential pair 160
5.2.3.6 Source-buffered differential pair 161
5.2.3.7 Comparison 169
5.2.4 EMI induced offset measurement setups 169
5.2.5 Measurements 177
5.3 Case study 2: EMI resisting instrumentation amplifier input circuit 182
5.3.1 Classic instrumentation amplifier input circuit 183
5.3.2 Input circuit using current sources modulation 189
5.3.3 Simulations 193
EMC of Analog Integrated Circuits
Redouté, J.-M.; Steyaert, M.
2010, X, 243 p., Hardcover