3. EMC OF INTEGRATED CIRCUITS VERSUS DISTORTION
 1 Introduction
 2 Relationship between EMI resisting design and distortion
 2.1 Linear distortion
 2.2 Nonlinear distortion (rectification)
 2.3 Weak and strong nonlinear distortion
 3 Case study 1: diode connected NMOS transistor
 4 Case study 2: NMOS source follower
 5 Case study 3: NMOS current mirror
 5.1 Capacitor decoupling the mirror node
 5.2 Low-pass $R-C$ filter in the mirror node
 5.3 Low-pass $R-C$ filter in the drain of M_1
 5.4 EMI resisting (4-transistor) current mirror
 5.5 EMI resisting (Wilson totem pole) current mirror
 5.6 Comparison of EMI susceptibility of current mirrors
 6 Case study 4: EMI susceptibility in ESD protections
 6.1 Weak nonlinear distortion in ESD protections
 6.2 Strong nonlinear distortion in ESD protections
 6.3 ESD protections: general conclusions
 7 EMI induced DC shift

4. EMI RESISTING ANALOG OUTPUT CIRCUITS
 1 Introduction
 2 Categorization of analog output structures
 2.1 Common-drain output circuits
 2.2 Common-source output circuits
 2.3 Comparing the electromagnetic susceptibility
 2.4 Large EMI amplitudes
 3 Case study 1: EMI resisting DC current regulator
 3.1 EMI issues in a classic DC current regulator
 3.1.1 EMI issues: small signal analysis
 3.1.2 EMI issues: large signal analysis
 3.1.3 Decoupling capacitor C_d
 3.2 DC current regulator with a high immunity to EMI
 3.3 Measurements
6. EMI RESISTING BANDGAP REFERENCES AND LOW DROPOUT VOLTAGE REGULATORS 197
 1 Introduction 197
 2 Case study 1: CMOS bandgap voltage references with a high immunity to EMI 201
 2.1 EMI injection in a Kuijk bandgap reference (NPD) 202
 2.1.1 Small signal analysis 205
 2.1.2 Large signal analysis 206
 2.2 EMI resisting Kuijk bandgap reference (PPD) 208
 2.2.1 Small signal analysis 210
 2.2.2 Large signal analysis 211
 2.3 EMI resisting Kuijk bandgap reference (PPDAL) 211
 2.3.1 Small signal analysis 213
 2.3.2 Large signal analysis 214
 2.4 Startup circuit and biasing 215
 2.5 Measurements 215
 3 Case study 2: EMI resisting low dropout voltage regulators 220
 3.1 EMI issues in LDO voltage regulator circuits 220
 3.2 Design example 226

7. EPILOGUE 227

REFERENCES 231

INDEX 241
EMC of Analog Integrated Circuits
Redouté, J.-M.; Steyaert, M.
2010, X, 243 p., Hardcover