CONTENTS

1  Ca$^{2+}$ Reactivity in the Gas Phase. Bonding, Catalytic Effects and Coulomb Explosions ................................................... 1
   Inés Corral, Cristina Trujillo, Jean-Yves Salpin, and Manuel Yáñez
   1.1 Introduction ........................................ 2
   1.2 Structure and Bonding of Ca$^{2+}$ Complexes ................. 3
   1.3 Stability of Ca$^{2+}$ Complexes in the Gas Phase ............ 11
   1.4 Reactivity Of Ca$^{2+}$ Ions in the Gas Phase ............... 14
   References ............................................... 29

2  From the Gas Phase to a Lipid Membrane Environment: DFT and MD Simulations of Structure and Dynamics of Hydrogen-Bonded Solvates of Bifunctional Heteroazaaromatic Compounds ............... 35
   Alexander Kyrychenko and Jacek Waluk
   2.1 Introduction ........................................ 36
   2.2 Electronic Structure of 1H-pyrrolo[3,2-h]quinoline ........... 38
   2.3 Structure of Gas-Phase Complexes ....................... 41
   2.3.1 Hydrogen-Bonded Complexes with Water ............... 41
   2.3.2 Excited-State Proton Transfer Through Water Bridges ............................................. 43
   2.3.3 Hydrogen-Bonded Complexes with Methanol ............ 46
   2.3.4 Cluster Size Effect on Fluorescence Quenching in Hydrogen-Bonded Complexes of PQ with Methanol ... 50
   2.4 Hydrogen Bonding of Heteroazaaromatics in Solution ....... 51
   2.4.1 Hydrogen-Bonded Complexes with Methanol and Water ........................................... 52
   2.4.2 Hydrogen-Bonding Dynamics in Bulk Solvents ......... 56
   2.5 Hydrogen-Bonding-Induced and Excited-state Phenomena in Bifunctional Donor–Acceptor Molecules ..................... 58
   2.6 Interaction of Heteroazaaromatics with Lipid Membranes .... 60
   2.6.1 Hydrogen-Bonding at the Membrane Interface .......... 63
   2.7 Probing the Acid–Base Equilibrium at the Membrane Interface .............................................. 67
   2.8 Conclusions ........................................... 71
   References ............................................... 72
3 Formamide as the Model Compound for Photodissociation Studies of the Peptide Bond

Mirjana Eckert-Maksic, Ivana Antol, Mario Vazdar, Mario Barbatti, and Hans Lischka

3.1 Introduction ........................................78
3.2 An Overview of Computational Methods for Studying Dynamics of Fast Photodissociation Processes ........79
3.3 Computational Details ..............................82
3.4 Simulations of Non-Adiabatic Photodynamics of Formamide . . . 83
3.4.1 Gas Phase Studies ............................. 83
3.4.2 Photodissociation of Substituted Formamides . ....... 89
3.5 Effect of Protonation on Photodissociation of Formamide .......96
3.6 Effect of Environment on Photodissociation of Formamide . . . .100
3.7 Conclusions and Final Remarks ........................102
References ..............................................104

4 Design of Catalysts for Asymmetric Organic Reactions Through Density Functional Calculations

C.B. Shinisha, Deepa Janardanan, and Raghavan B. Sunoj

4.1 Introduction .......................................107
4.1.1 Organocatalytic Reactions and Theoretical Models . . . .108
4.1.2 Sulfur Ylide Promoted Reactions ........................111
4.2 Computational Methods .............................113
4.2.1 Terminology .....................................114
4.3 Results and Discussion .............................114
4.3.1 Intermolecular Aldol Reaction ...............114
4.3.2 Sulfur Ylide Promoted Reactions .....................123
4.4 Summary ......................................133
References ..............................................134

5 Reactive Processes with Molecular Simulations

Sabyashachi Mishra and Markus Meuwly

5.1 Introduction ......................................137
5.2 Conceptual Approaches .............................140
5.2.1 Molecular Mechanics with Proton Transfer .............140
5.2.2 Reactive Molecular Dynamics ........................141
5.2.3 Empirical Valence Bond ............................142
5.2.4 ReaxFF ........................................143
5.2.5 Other Approaches ................................145
5.3 Applications ......................................145
5.3.1 Proton Transfer Reactions ......................145
5.3.2 Ligand Binding in Heme Proteins ....................148
6 Theoretical Studies of Polymerisation Reactions

Marek Cypryk and Grzegorz Krasinski

6.1 Introduction

6.1.1 Methods for Modelling of Polymers

6.1.2 Large-Scale Molecular Modelling Calculations on Biological Systems

6.1.3 Molecular Modelling Software for Describing Transition Structures and Minimum Energy Paths

6.2 Computational Quantum Chemistry Studies of Polymerisation Mechanisms

6.2.1 Solvent Effects

6.2.2 Free-Radical Polymerisation

6.2.3 Ionic Polymerisation

6.2.4 Coordination Polymerisation

6.2.5 Polycondensation

6.3 Enzymatic Reactions

6.4 Structural Studies

6.5 Summary

References

7 Evaluation of Proton Transfer in DNA Constituents: Development and Application of Ab Initio Based Reaction Kinetics

Dmytro Kosenkov, Yana Kholod, Leonid Gorb, and Jerzy Leszczynski

7.1 Introduction

7.2 Methodology

7.2.1 Ab Initio Based Computation of Reaction Rates

7.2.2 Numerical Solution of a System of Rate Equations

7.3 Applications of the Reaction Kinetics Models to the Studies of Proton Transfer in DNA Constituents

7.3.1 Tautomerization of Nucleobases in the Gas Phase

7.3.2 Tautomerization of Isolated and Monohydrated Cytosine and Guanine at Room Temperature

7.3.3 Role of Hydrated Metal Ions for Nucleic Acids Stabilization

7.3.4 Gas Phase Tautomerization in AT and GC Pairs of DNA Bases

7.4 Conclusions

References
## Contents

### Simulation of Charge Transfer in DNA

**Tomáš Kubář and Marcus Elstner**

8 Simulation of Charge Transfer in DNA ........................................... 213

8.1 Introduction ................................................................................. 213
  8.1.1 Basics of Hole Transfer in DNA ........................................... 214
  8.1.2 Experimental Studies .......................................................... 214
  8.1.3 Theory and Computation ....................................................... 217
  8.1.4 Subject of This Contribution ............................................... 220

8.2 Charge-Transfer Parameters ....................................................... 220
  8.2.1 Ionization Potentials ............................................................ 220
  8.2.2 Electronic Couplings ............................................................ 220
  8.2.3 CT Parameters Within the Fragment-Orbital Approach ............ 221
  8.2.4 Summary .............................................................................. 224

8.3 Effect of Dynamics and Environment on CT Parameters ............... 224
  8.3.1 Electronic Couplings ............................................................ 225
  8.3.2 Ionization Potentials ............................................................ 225
  8.3.3 Computation of CT Parameters Along MD Trajectories ............ 226
  8.3.4 Summary .............................................................................. 230

8.4 Quantum Dynamics of a Hole in DNA .......................................... 230
  8.4.1 Integration of the Time-Dependent Schrödinger Equation ........... 230
  8.4.2 Simulation of Hole Transfer Over Adenine Bridges ................. 231
  8.4.3 Summary .............................................................................. 235

8.5 Solvent Reorganization Energy and De-Localization of the Hole ..... 236
  8.5.1 Polarization of the Environment by the Hole Charge ............... 236
  8.5.2 Solvent Reorganization Energy .............................................. 237
  8.5.3 Spatial Extent of the Hole ...................................................... 238
  8.5.4 How to Include the Response of Solvent in the Simulation? ...... 239

8.6 Summary, Conclusions and Outlook ............................................ 240
  8.6.1 Fundamental Mechanism of Charge Transfer ......................... 241
  8.6.2 De/localization of the Hole .................................................... 241
  8.6.3 Requirements on a Computational Model ............................... 242

References ....................................................................................... 242

### Quantum-Mechanical Molecular Dynamics of Charge Transfer

**Victor M. Anisimov and Claudio N. Cavasotto**

9 Quantum-Mechanical Molecular Dynamics of Charge Transfer .......... 247

9.1 Introduction .............................................................................. 248

9.2 Theoretical Part ................................................................. 249

9.3 The Notion of Charge Transfer ................................................. 251
  9.3.1 QM MD of Ubiquitin in Explicit Water ................................. 253
  9.3.2 Charge Transfer Inside Protein ........................................... 254
## Contents

9.3.3 Charge Transfer Channel .............................................. 255  
9.3.4 Inequality Among Same-Type Amino Acids ...................... 257  
9.3.5 Protein-Solvent Charge Transfer ..................................... 261  
9.4 Implications of Charge Transfer ....................................... 264  
References ............................................................................. 265  

10 Beyond Standard Quantum Chemical Semi-Classic Approaches:  
Towards a Quantum Theory of Enzyme Catalysis ..................... 267  

*Orlando Tapia*

10.1 Introduction ............................................................. 268  
10.2 Enzyme Catalyzed Reactions ........................................ 269  
10.2.1 Transition Structures and Chemical Mechanisms ............. 271  
10.3 Exact Quantum Schemes ............................................... 272  
10.4 Semi-Classic Schemes and Beyond .................................. 274  
10.4.1 Semi-classic Hamiltonian Models .............................. 274  
10.4.2 Invariant Electronic Configuration Space Models .......... 277  
10.4.3 “Mobile” Electronic-Configuration-Space:  
Nodal Envelope States ....................................................... 278  
10.5 Quantum Aspects of Catalysis ....................................... 279  
10.5.1 Model Quantum Catalyst: H + H and H₂ ...................... 279  
10.5.2 Quantum Transition States ......................................... 281  
10.5.3 Abstract BO Transition Structures .............................. 283  
10.6 Angular Momentum (Spin) and Chemical reactivity .......... 285  
10.6.1 Spin–Space Separation and Chemical Reactivity .......... 286  
10.7 Photorespiration: Dioxygen ........................................... 293  
10.8 More Light .................................................................. 295  
References ............................................................................. 298  

11 Molecular Dynamics Simulations: Difficulties, Solutions  
and Strategies for Treating Metalloenzymes ............................. 299  

*Sérgio F. Sousa, Pedro A. Fernandes, and Maria João Ramos*

11.1 Introduction ............................................................. 299  
11.2 Biomolecular Force Fields ............................................ 301  
11.2.1 AMBER ............................................................. 302  
11.2.2 CHARMM ........................................................... 303  
11.2.3 OPLS ................................................................. 304  
11.3 Difficulties in Treating a Metalloenzyme ......................... 305  
11.4 Parameterization Strategies for Metalloproteins ................. 305  
11.4.1 The Non-Bonded Model Approach ............................ 306  
11.4.2 The Bonded Model Approach ................................. 308  
11.4.3 Cationic Dummy Atom Approach ............................ 309  
11.4.4 Alternative Formulations ......................................... 310
### Table of Contents

**11.5 Farnesyltransferase as a Test Case**
- **11.5.1 The Target Protein**
- **11.5.2 Initial Strategies**
- **11.5.3 Setting a Bonded Model Simulation**
- **11.5.4 Validation and Application**

**11.6 Summary**

**References**

**12 QM/MM Energy Functions, Configuration Optimizations, and Free Energy Simulations of Enzyme Catalysis**
- **12.1 Enzyme Catalysis and QM/MM Modeling**
  - **12.1.1 Non-Covalent Contributions to Enzyme Catalysis**
  - **12.1.2 Modeling Non-Covalent Interactions in Enzyme Reactions by QM/MM**
- **12.2 QM/MM as Potential Energy Models**
  - **12.2.1 Mechanical Embedding QM/MM**
  - **12.2.2 Electrostatic QM/MM**
  - **12.2.3 QM/MM Partitioning and the Treatment of Boundaries**
  - **12.2.4 Long Range Electrostatic Effects**
- **12.3 Optimization and Sampling in QM/MM Configuration Spaces**
  - **12.3.1 Effects of System Sizes and Computational Characteristics of QM/MM**
  - **12.3.2 Optimization on QM/MM Potential Energy Surfaces**
  - **12.3.3 Free Energies and Sampling in QM/MM Configuration Spaces**
- **12.4 Applying QM/MM to Enzymatic Systems**
  - **12.4.1 Practical Issues**
  - **12.4.2 Learning How Enzymes Work Through QM/MM Modeling**

**References**

**13 Computational Modeling of Biological Systems: The LDH Story**
- **13.1 Introduction**
- **13.2 Gas Phase Calculations**
- **13.3 Inclusion of Environment Effects**
  - **13.3.1 Cluster Models**
  - **13.3.2 QM/MM Methods**
- **13.4 Statistical Simulations**

**References**
16.2 MD Simulations ........................................ 435
16.3 The Role of Simulations in the Drug Discovery Process .. 436
16.4 Virtual Screening and MD Simulations. .................. 437
16.4.1 Pharmacophore Modelling ......................... 437
16.4.2 Docking ........................................ 439
16.5 Prediction of Gibbs Free Energy of Binding ............... 443
16.5.1 MM/PB(GB)SA .................................. 444
16.5.2 LIE Approach .................................... 447
16.5.3 FEP/TI ........................................ 450
16.6 Elucidation of Structural Function Using Simulations ....... 452
16.6.1 GPCRs ......................................... 452
16.6.2 Water .......................................... 454
16.7 Perspective ......................................... 455
References ............................................ 457

17 Interpretation of Kinetic Isotope Effects in Enzymatic Cleavage of Carbon-Hydrogen Bonds ................................. 465
Willem Siebrand and Zorka Smedarchina
17.1 Introduction ......................................... 465
17.2 Model ............................................... 468
17.3 Physical Parameters .................................. 473
17.4 Application to Lipoxygenase-1 ......................... 474
17.5 Application to Free Radical Transfer ................... 475
17.6 Application to Methylamine Dehydrogenase ............... 477
17.7 Discussion ......................................... 478
References ............................................ 479

18 Tunneling Transmission Coefficients: Toward More Accurate and Practical Implementations .............................................. 481
Rubén Meana-Pañeda and Antonio Fernández-Ramos
18.1 Introduction ......................................... 481
18.2 Tunneling Transmission Coefficients .................... 484
18.3 Practical Implementation of the LCG4 and LAG4 Methods . 491
18.4 Transmission Coefficients and KIEs ..................... 496
References ............................................ 498

19 Integrating Computational Methods with Experiment Uncovers the Role of Dynamics in Enzyme-Catalysed H-Tunnelling Reactions .. 501
Linus O. Johannissen, Sam Hay, Jiayun Pang, Michael J. Sutcliffe, and Nigel S. Scrutton
19.1 Introduction ......................................... 501
19.2 H-Tunneling Reactions as Probes of Dynamics .......... 502
19.2.1 Hydrogen Atom Transfer in Soybean Lipoygenase-1 ............................................. 505

19.2.2 Hydride Transfer in Morphinone Reductase ........ 507

19.3 Computational Techniques for Atomistic Analysis
       of Promoting Vibrations .................................. 509

19.3.1 Spectral Density Analysis Reveals a Promoting
       Vibration in Horse Liver Alcohol Dehydrogenase . . . 509

19.3.2 Spectral Densities Coupled with Digital
       Filtering of Atomic Motions Reveal a Complicated
       Picture in Aromatic Amine Dehydrogenase ......... 510

19.3.3 Potential Energy Scans Reveal the Effect
       of the Promoting Vibration on Barrier
       Scaling in AADH ........................................ 512

19.4 The Role of Long-Range Coupled Motions. ............... 514

19.4.1 Coupled Motions of Different Timescales in DHFR . . 514

19.4.2 A Proposed Conserved Network of Vibrations
       in HLADH .............................................. 515

19.4.3 A Small-Scale, Local Promoting Vibration in AADH . . 516

19.5 Discussion and Future Perspectives ...................... 517

References .................................................. 518

Index ........................................................................... 521
Kinetics and Dynamics
From Nano- to Bio-Scale
Paneth, P.; Dybała-Defrattyka, A. (Eds.)
2010, XVIII, 530 p., Hardcover