CONTENTS

1 Ca\(^{2+}\) Reactivity in the Gas Phase. Bonding, Catalytic Effects and Coulomb Explosions .. 1
 \textit{Inés Corral, Cristina Trujillo, Jean-Yves Salpin, and Manuel Yáñez}
 1.1 Introduction .. 2
 1.2 Structure and Bonding of Ca\(^{2+}\) Complexes 3
 1.3 Stability of Ca\(^{2+}\) Complexes in the Gas Phase 11
 1.4 Reactivity Of Ca\(^{2+}\) Ions in the Gas Phase 14
 References ... 29

2 From the Gas Phase to a Lipid Membrane Environment: DFT and MD Simulations of Structure and Dynamics of Hydrogen-Bonded Solvates of Bifunctional Heteroazaaromatic Compounds 35
 \textit{Alexander Kyrychenko and Jacek Waluk}
 2.1 Introduction .. 36
 2.2 Electronic Structure of 1H-pyrrolo[3,2-\(h\)]quinoline 38
 2.3 Structure of Gas-Phase Complexes 41
 2.3.1 Hydrogen-Bonded Complexes with Water 41
 2.3.2 Excited-State Proton Transfer Through Water Bridges 43
 2.3.3 Hydrogen-Bonded Complexes with Methanol 46
 2.3.4 Cluster Size Effect on Fluorescence Quenching in Hydrogen-Bonded Complexes of PQ with Methanol ... 50
 2.4 Hydrogen Bonding of Heteroazaaromatics in Solution 51
 2.4.1 Hydrogen-Bonded Complexes with Methanol and Water 52
 2.4.2 Hydrogen-Bonding Dynamics in Bulk Solvents 56
 2.5 Hydrogen-Bonding-Induced and Excited-state Phenomena in Bifunctional Donor–Acceptor Molecules 58
 2.6 Interaction of Heteroazaaromatics with Lipid Membranes .. 60
 2.6.1 Hydrogen-Bonding at the Membrane Interface 63
 2.7 Probing the Acid–Base Equilibrium at the Membrane Interface .. 67
 2.8 Conclusions .. 71
 References ... 72
3 Formamide as the Model Compound for Photodissociation Studies of the Peptide Bond ... 77
Mirjana Eckert-Maksic’, Ivana Antol, Mario Vazdar, Mario Barbatti, and Hans Lischka

3.1 Introduction .. 78
3.2 An Overview of Computational Methods for Studying Dynamics of Fast Photodissociation Processes 79
3.3 Computational Details ... 82
3.4 Simulations of Non-Adiabatic Photodynamics of Formamide ... 83
3.4.1 Gas Phase Studies ... 83
3.4.2 Photodissociation of Substituted Formamides 89
3.5 Effect of Protonation on Photodissociation of Formamide .. 96
3.6 Effect of Environment on Photodissociation of Formamide . 100
3.7 Conclusions and Final Remarks 102
References ... 104

4 Design of Catalysts for Asymmetric Organic Reactions Through Density Functional Calculations .. 107
C.B. Shinisha, Deepa Janardanan, and Raghavan B. Sunoj

4.1 Introduction ... 107
4.1.1 Organocatalytic Reactions and Theoretical Models . . 108
4.1.2 Sulfur Ylide Promoted Reactions 111
4.2 Computational Methods ... 113
4.2.1 Terminology .. 114
4.3 Results and Discussion ... 114
4.3.1 Intermolecular Aldol Reaction 114
4.3.2 Sulfur Ylide Promoted Reactions 123
4.4 Summary .. 133
References ... 134

5 Reactive Processes with Molecular Simulations 137
Sabyashachi Mishra and Markus Meuwly

5.1 Introduction ... 137
5.2 Conceptual Approaches ... 140
5.2.1 Molecular Mechanics with Proton Transfer 140
5.2.2 Reactive Molecular Dynamics 141
5.2.3 Empirical Valence Bond 142
5.2.4 ReaxFF ... 143
5.2.5 Other Approaches ... 145
5.3 Applications ... 145
5.3.1 Proton Transfer Reactions 145
5.3.2 Ligand Binding in Heme Proteins 148
Contents

9.3.3 Charge Transfer Channel 255
9.3.4 Inequality Among Same-Type Amino Acids 257
9.3.5 Protein-Solvent Charge Transfer 261
9.4 Implications of Charge Transfer 264
References .. 265

10 Beyond Standard Quantum Chemical Semi-Classic Approaches:
Towards a Quantum Theory of Enzyme Catalysis 267

Orlando Tapia

10.1 Introduction 268
10.2 Enzyme Catalyzed Reactions 269
10.2.1 Transition Structures and Chemical Mechanisms 271
10.3 Exact Quantum Schemes 272
10.4 Semi-Classical Schemes and Beyond 274
10.4.1 Semi-classic Hamiltonian Models 274
10.4.2 Invariant Electronic Configuration Space Models ... 277
10.4.3 “Mobile” Electronic-Configuration-Space: Nodal Envelope States .. 278
10.5 Quantum Aspects of Catalysis 279
10.5.1 Model Quantum Catalyst: H + H and H₂ 279
10.5.2 Quantum Transition States 281
10.5.3 Abstract BO Transition Structures 283
10.6 Angular Momentum (Spin) and Chemical reactivity 285
10.6.1 Spin–Space Separation and Chemical Reactivity ... 286
10.7 Photorespiration: Dioxygen 293
10.8 More Light ... 295
References .. 298

11 Molecular Dynamics Simulations: Difficulties, Solutions
and Strategies for Treating Metalloenzymes 299

Sérgio F. Sousa, Pedro A. Fernandes, and Maria João Ramos

11.1 Introduction 299
11.2 Biomolecular Force Fields 301
11.2.1 AMBER .. 302
11.2.2 CHARMM .. 303
11.2.3 OPLS .. 304
11.3 Difficulties in Treating a Metalloenzyme 305
11.4 Parameterization Strategies for Metalloproteins 305
11.4.1 The Non-Bonded Model Approach 306
11.4.2 The Bonded Model Approach 308
11.4.3 Cationic Dummy Atom Approach 309
11.4.4 Alternative Formulations 310
11.5 Farnesyltransferase as a Test Case 311
 11.5.1 The Target Protein ... 311
 11.5.2 Initial Strategies ... 313
 11.5.3 Setting a Bonded Model Simulation 314
 11.5.4 Validation and Application 323
11.6 Summary .. 326
References .. 327

12 QM/MM Energy Functions, Configuration Optimizations,
and Free Energy Simulations of Enzyme Catalysis 331
Haiyan Liu
 12.1 Enzyme Catalysis and QM/MM Modeling 331
 12.1.1 Non-Covalent Contributions to Enzyme Catalysis .. 331
 12.1.2 Modeling Non-Covalent Interactions in Enzyme
 Reactions by QM/MM 333
 12.2 QM/MM as Potential Energy Models 333
 12.2.1 Mechanical Embedding QM/MM 333
 12.2.2 Electrostatic QM/MM 334
 12.2.3 QM/MM Partitioning and the Treatment
 of Boundaries .. 335
 12.2.4 Long Range Electrostatic Effects 338
 12.3 Optimization and Sampling in QM/MM
 Configuration Spaces 339
 12.3.1 Effects of System Sizes and Computational
 Characteristics of QM/MM 340
 12.3.2 Optimization on QM/MM Potential
 Energy Surfaces 340
 12.3.3 Free Energies and Sampling in QM/MM
 Configuration Spaces 344
 12.4 Applying QM/MM to Enzymatic Systems 347
 12.4.1 Practical Issues 347
 12.4.2 Learning How Enzymes Work Through QM/MM
 Modeling .. 349
References .. 351

13 Computational Modeling of Biological Systems: The LDH Story 355
Silvia Ferrer, Sergio Marti, Vicent Moliner, and Inaki Tunon
 13.1 Introduction .. 356
 13.2 Gas Phase Calculations 358
 13.3 Inclusion of Environment Effects 358
 13.3.1 Cluster Models 358
 13.3.2 QM/MM Methods 359
 13.4 Statistical Simulations 365
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2</td>
<td>MD Simulations</td>
<td>435</td>
</tr>
<tr>
<td>16.3</td>
<td>The Role of Simulations in the Drug Discovery Process</td>
<td>436</td>
</tr>
<tr>
<td>16.4</td>
<td>Virtual Screening and MD Simulations</td>
<td>437</td>
</tr>
<tr>
<td>16.4.1</td>
<td>Pharmacophore Modelling</td>
<td>437</td>
</tr>
<tr>
<td>16.4.2</td>
<td>Docking</td>
<td>439</td>
</tr>
<tr>
<td>16.5</td>
<td>Prediction of Gibbs Free Energy of Binding</td>
<td>443</td>
</tr>
<tr>
<td>16.5.1</td>
<td>MM/PB(GB)SA</td>
<td>444</td>
</tr>
<tr>
<td>16.5.2</td>
<td>LIE Approach</td>
<td>447</td>
</tr>
<tr>
<td>16.5.3</td>
<td>FEP/TI</td>
<td>450</td>
</tr>
<tr>
<td>16.6</td>
<td>Elucidation of Structural Function Using Simulations</td>
<td>452</td>
</tr>
<tr>
<td>16.6.1</td>
<td>GPCRs</td>
<td>452</td>
</tr>
<tr>
<td>16.6.2</td>
<td>Water</td>
<td>454</td>
</tr>
<tr>
<td>16.7</td>
<td>Perspective</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>457</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Interpretation of Kinetic Isotope Effects in Enzymatic Cleavage</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>of Carbon-Hydrogen Bonds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Willem Siebrand and Zorka Smedarchina</td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>465</td>
</tr>
<tr>
<td>17.2</td>
<td>Model</td>
<td>468</td>
</tr>
<tr>
<td>17.3</td>
<td>Physical Parameters</td>
<td>473</td>
</tr>
<tr>
<td>17.4</td>
<td>Application to Lipoxygenase-1</td>
<td>474</td>
</tr>
<tr>
<td>17.5</td>
<td>Application to Free Radical Transfer</td>
<td>475</td>
</tr>
<tr>
<td>17.6</td>
<td>Application to Methylamine Dehydrogenase</td>
<td>477</td>
</tr>
<tr>
<td>17.7</td>
<td>Discussion</td>
<td>478</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>479</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Tunneling Transmission Coefficients: Toward More Accurate</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>and Practical Implementations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rubén Meana-Pañeda and Antonio Fernández-Ramos</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>481</td>
</tr>
<tr>
<td>18.2</td>
<td>Tunneling Transmission Coefficients</td>
<td>484</td>
</tr>
<tr>
<td>18.3</td>
<td>Practical Implementation of the LCG4 and LAG4 Methods</td>
<td>491</td>
</tr>
<tr>
<td>18.4</td>
<td>Transmission Coefficients and KIEs</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>498</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Integrating Computational Methods with Experiment Uncovers</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>the Role of Dynamics in Enzyme-Catalysed H-Tunnelling Reactions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Linus O. Johannissen, Sam Hay, Jiayun Pang, Michael J. Sutcliffe,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Nigel S. Scrutton*</td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>501</td>
</tr>
<tr>
<td>19.2</td>
<td>H-Tunneling Reactions as Probes of Dynamics</td>
<td>502</td>
</tr>
</tbody>
</table>
19.2.1 Hydrogen Atom Transfer in Soybean Lipoxigenase-1 .. 505
19.2.2 Hydride Transfer in Morphinone Reductase 507

19.3 Computational Techniques for Atomistic Analysis
of Promoting Vibrations 509
19.3.1 Spectral Density Analysis Reveals a Promoting
Vibration in Horse Liver Alcohol Dehydrogenase 509
19.3.2 Spectral Densities Coupled with Digital
Filtering of Atomic Motions Reveal a Complicated
Picture in Aromatic Amine Dehydrogenase 510
19.3.3 Potential Energy Scans Reveal the Effect
of the Promoting Vibration on Barrier
Scaling in AADH .. 512

19.4 The Role of Long-Range Coupled Motions. 514
19.4.1 Coupled Motions of Different Timescales in DHFR ... 514
19.4.2 A Proposed Conserved Network of Vibrations
in HLADH ... 515
19.4.3 A Small-Scale, Local Promoting Vibration in AADH ... 516

19.5 Discussion and Future Perspectives 517

References .. 518

Index .. 521
Kinetics and Dynamics
From Nano- to Bio-Scale
Paneth, P.; Dybala-Defratyka, A. (Eds.)
2010, XVIII, 530 p., Hardcover