Contents

1 Introduction .. 1

2 Fundamentals of X-Ray Diffraction and X-Ray Interferometry ... 7
 2.1 Basic Elements of Crystallography 8
 2.1.1 Lattices and Cells 8
 2.1.2 Lattice Configurations 12
 2.1.3 Lattice Directions, Planes and Miller Indices 14
 2.1.4 Bragg’s Law ... 23
 2.1.5 Lattice Functions and Reciprocal Lattices 25
 2.1.6 Construction of the Ewald Sphere 34
 2.2 Scattering by Ideal Crystals 37
 2.2.1 Influence of the Electric Field E on Matter 38
 2.2.1.1 The Potential at a Point of a Discrete and Continuous Distributions of Charges 40
 2.2.1.2 The Field of a Polarized Object 45
 2.2.1.3 The Electrostatic Equations with Dielectrics 49
 2.2.1.4 Boundary Conditions on D and E 50
 2.2.1.5 Calculation of Electric Susceptibility 53
 2.2.2 Radiation from a Group of Accelerated Charges 57
 2.2.2.1 Special Case of an Accelerated Electron 64
 2.2.2.2 Atomic Scattering Factor and Structure Factor of the Crystal 66
 2.3 Takagi-Taupin Equations 75
 2.3.1 Maxwell-Laue Wave Equations 75
 2.3.2 Ewald Expansion of Wave Fields 78
 2.3.3 Approximate Solutions of System 83
 2.3.3.1 One-Wave Approximation 83
 2.3.3.2 Two-Wave Approximation 85
 2.4 X-Ray Interferometry 92
 2.4.1 Splitter and Mirror 94
 2.4.2 Laboratory Reference Frame and Crystal Reference Frame 96
2.4.3 Two-Beam Case ... 98
2.4.4 X-Ray Fringes ... 102

3 Linear Elasticity and Anisotropy ... 109

3.1 Analysis of Stress ... 111
3.1.1 Continuum Hypothesis ... 111
3.1.2 Cauchy’s Principle, the Traction Vector 111
3.1.3 Cauchy’s Theorem, the Stress Tensor 114
3.1.4 Transformation of the Coefficients σ_{ij} 115
3.1.5 Force and Momentum ... 117
 3.1.5.1 Force Equilibrium 117
 3.1.5.2 Moment Equilibrium 118

3.2 Displacements and Strain ... 120
3.2.1 Description of the Motion of a Continuum 123
3.2.2 Relative Displacements, Deformation Gradient and Strain
 Tensor ... 125
3.2.3 Is ε a Tensor? .. 128
3.2.4 Other Notations for the Strain Components 129
3.2.5 Interpretation of the Infinitesimal Strain Components 130
 3.2.5.1 Diagonal Elements 130
 3.2.5.2 Off-Diagonal Elements 130

3.3 Generalized Hooke’s Law ... 131
3.3.1 Elastic Coefficients in Crystals 135
 3.3.1.1 Effect of a Binary Axis of Symmetry 135
3.3.2 Transformation of c_{ijkl} and s_{ijkl} 140
 3.3.2.1 A Practical Example: Silicon Crystal 144
 3.3.2.2 Surface Representing the Variation of Young’s
 Modulus with the Change of Direction 146
 3.3.2.3 Optimal Crystal Orientation in the X-Ray
 Interferometer 147

3.4 Equations of Equilibrium in Terms of Displacement Components

4 Propagation of Thermal Energy ... 161
4.1 Derivation of the Equation of Propagation of Thermal Energy 162
 4.1.1 Boundary and Initial Conditions 167
4.2 Methods of Solution ... 168
 4.2.1 Method of Separation of Variables 169
 4.2.1.1 Homogeneous PDE with Homogeneous
 Boundary Conditions of First Type 170
 4.2.1.2 Homogeneous PDE with Non-homogeneous
 Boundary Conditions of Third Type 174
 4.2.1.3 Homogeneous PDE with Time-Varying and
 Conditions of the First Type 178
 4.2.1.4 Non-homogeneous PDE with Homogeneous
 Boundary Conditions 179
4.2.1.5 Homogeneous PDE with Non-homogeneous Boundary Conditions of Third Type Dependent on Time 181
4.2.2 Numerical Methods .. 189
 4.2.2.1 Finite Differences Approximations 189
 4.2.2.2 Elements of Method of Lines 196

5 Anti-vibration Mounting System 199
 5.1 Elements of a Vibratory System 201
 5.1.1 Equivalence of Systems 202
 5.2 Systems with a Single Degree of Freedom 203
 5.2.1 Free Vibrations Without Damping 205
 5.2.2 Free Vibrations with Damping 207
 5.2.2.1 Undamped System ($\zeta = 0$ or $c = 0$) 209
 5.2.2.2 Underdamped System ($\zeta < 1$ or $c < C_c$) 209
 5.2.2.3 Critically Damped System ($\zeta = 1$ or $c = C_c$) ... 210
 5.2.2.4 Overdamped System ($\zeta > 1$ or $c > C_c$) 211
 5.2.2.5 Logarithmic Decrement 212
 5.2.3 Forced Vibrations 213
 5.2.3.1 Driving Force Applied Directly to the Mass m 214
 5.2.3.2 Influence of Ground Motion 216
 5.2.3.3 Complex Vector Representation of Harmonic Motion 219
 5.3 Systems with Two Degrees of Freedom 220
 5.3.1 Two Masses and Three Springs 221
 5.3.1.1 Newton’s Method 221
 5.3.1.2 Lagrange’s Method 222
 5.3.1.3 Free Vibrations Analysis 223
 5.3.1.4 Natural Frequencies and Modes of a Simple
 Two-Degree-of-Freedom System 227
 5.3.2 Motion of One Platform with Two Degrees of Freedom . 231
 5.4 Dynamic Response of an Anti-vibration Mounting 235

6 Data Analysis and Interpolation with B-Splines 247
 6.1 Why Splines? ... 250
 6.2 One-Dimensional Cubic Splines 250
 6.3 One-Dimensional Cubic B-Splines 257
 6.3.1 Uniform Cubic B-Splines 258
 6.4 Splines and B-Splines of Order n 263
 6.4.1 Data Interpolation 265
 6.4.1.1 Collapsing Knots 267
 6.4.1.2 Choosing the Knots Sequence 268
 6.4.1.3 The Interpolating Spline 270
 6.5 Two-Dimensional B-Splines 271
 6.6 Determination of the Volume of a Spheroid 274
 6.6.1 Volume Uncertainty Estimate 275
Appendix A	Ontic Profile of N_A	277
Appendix B	Calculation of the Coefficients ρ_g and ρ_{hkl}	279
Appendix C	Cell Volume in Direct and Reciprocal Space	281
Appendix D	Interplanar Spacing d_{hkl}	283
Appendix E	Displacement of an Electron Cloud	285
Appendix F	Symmetries of χ_g	289
Appendix G	How to Exploit the Laplacian Operator	291
Appendix H	Product of Infinite Series	293
Appendix I	How to Expand the $\nabla \times (\nabla \times \mathbf{\sigma})$ Operator	295
Appendix J	Cylindrical Wave	297
Appendix K	Transformation from $d_0(x, z)$ to $\tilde{d}_0(x, z)$	299
Appendix L	Cosinusoidal X-Ray Fringes	301
Appendix M	Example About Deformation Gradient $\nabla [u]$	303
Appendix N	The Symmetry Properties $c_{ijkl} = c_{jikl} = c_{ijlk} = c_{klij}$ and the Concept of Strain Energy Density	307
Appendix O	Synchronous Motion	313
Appendix P	Number of Atoms in a 1 kg Mono-isotopic Silicon Sphere	317
Appendix Q	About Collapsing Nodes	319
References		321
Index		325
Pathways Through Applied and Computational Physics
Barbero, N.; Delfino, M.; Palmisano, C.; Zosi, G.
2014, XXXV, 329 p. 118 illus., Softcover