Contents

1 Introduction and Chronological Perspective 1
 1.1 The Leap from Crank-Nicolson to Scharfetter-Gummel 1
 1.1.1 Limitations for Gradients Computed with Finite Differences 1
 1.1.2 Numerical Gradients as Local First Integrals of the Motion ... 3
 1.2 Modular Programming and Its Shortcomings 4
 1.2.1 Well-Balanced to Control Stiffness and Averaging Errors 5
 1.2.2 Singular Perturbation Theory and Asymptotic-Preserving 6
 1.3 Organization of the Book ... 7
 1.3.1 Hyperbolic Systems of Balance Laws 7
 1.3.2 Weakly Nonlinear Kinetic Equations 10
References ... 14

Part I Hyperbolic Quasi-Linear Balance Laws

2 Lifting a Non-Resonant Scalar Balance Law 21
 2.1 Generalities about Scalar Laws with Source Terms 21
 2.1.1 Method of Characteristics and Shocks 21
 2.1.2 Entropy Solution and Kružkov Theory 22
 2.1.3 Initial-Boundary Value Problem and Large-Time Behavior ... 24
 2.2 Localization Process of the Source Term on a Discrete Lattice ... 26
 2.2.1 Nonconservative Lifting of an Inhomogeneous Equation . 27
 2.2.2 The Measure Source Term Revealed by the Weak-∗ limit 29
 2.2.3 A L^1 Contraction Result “à la Kružkov” 31
 2.3 Time-Exponential Error Estimate for the Godunov Scheme 33
 2.3.1 Decay of Riemann Invariants and Temple Compactness 33
 2.3.2 Error Estimates for One-Dimensional Balance Laws 33
 2.3.3 Application to the Scalar Well-Balanced Scheme 35
References ... 39
3 Lyapunov Functional for Linear Error Estimates

3.1 Preliminaries

3.1.1 A Puzzling Numerical Example

3.1.2 Lifting of the Balance Law: Temple System Reformulation

3.2 Error Estimate for Non-Resonant Wave-Front Tracking

3.2.1 Wave-Front Tracking Approximations

3.2.2 Stability Estimates for Wave-Front Tracking Approximations

3.2.3 Limit $\delta \to 0$ and Deviation from Kružkov’s Entropy Solution

3.3 Error Estimate for the Non-Resonant Godunov Scheme

3.3.1 Design of a “Wave-Front Tracking/Godunov Scheme”

3.3.2 Control of the Functional’s Jump at Each Averaging Step

3.3.3 Linear L^1 Error Estimate and Comparison with Kuznetsov

3.3.4 Decoupling of the Time t and Grid Size Δx in (3.22)

3.4 More Transient Numerical Evidence

3.4.1 An Inhomogeneous N-Wave

3.4.2 LeVeque-Yee’s Effect for Riccati Source Term

3.4.3 A Stationary Roll-Wave

References

4 Early Well-Balanced Derivations for Various Systems

4.1 Huang-Liu’s Piecewise-Steady Scheme for Nozzle Flows

4.1.1 Generalities and Quasi-One Dimensional Flows

4.1.2 Derivation of the Piecewise-Steady Scheme

4.1.3 Relation with Quasi-Steady Wave Propagation Algorithm

4.2 Sod’s Random Choice Method for Diffusion Problems

4.2.1 Derivation of Sod’s Algorithm

4.2.2 Relation with Scharfetter-Gummel’s Procedure

4.3 Special Case: a Model of Atmosphere with Gravity

4.4 A General Localization Process for the Source Term

4.4.1 Preliminary Versions of the Well-Balanced Scheme

4.4.2 Passing from the Scalar Case to General Systems

4.4.3 Flux-Splitting and Relation with Huang-Liu’s Scheme

References

5 Viscosity Solutions and Large-Time Behavior for Non-Resonant Balance Laws

5.1 Small BV Existence, Uniqueness and L^1 Stability Results

5.1.1 Structural Hypotheses on the $n \times n$ System

5.1.2 Definition of Small BV Viscosity Solutions

5.1.3 Stepping Stones for Existence and Stability Results
Part I

5 Kinetic Scheme with Reflections and Linear Geometric Optics

5.2 Weak and Strong Results for the Large-Time Behavior

5.2.1 Genuine Non-Linearity and Decay of Positive Waves

5.2.2 Non-Interacting Homogeneous Waves and Stationary Solutions

References

6 First Numerical Examples on Vlasov-Poisson System

6.1 An Alternative Derivation of the Well-Balanced Kinetic Scheme

6.1.1 The Consistency vs. Stability Dilemma for the Vlasov Scheme

6.1.2 Preserving the Curves of Constant Hamiltonian

6.1.3 Computing the Modified State $f^{\mu}_{j-1}(\pm v_k)$

6.1.4 Discrete Variables v_k and Scattering Matrix Formulation

6.2 First Numerical Examples on Vlasov-Poisson System

6.2.1 Repulsive One-Dimensional Vlasov-Poisson

6.2.2 Gravitational One-Dimensional Vlasov-Poisson

6.2.3 Hamiltonian-Preserving: a First Case of 2D Well-Balanced

6.3 WKB Approximation of Oscillating Schrödinger Equations

6.3.1 Preliminaries on the Linear Schrödinger Equation

6.3.2 K-Multivalued Solutions and Moment Inversion

6.3.3 Kinetic Flux-Splitting Scheme for K-Multivalued Solutions

6.4 Numerical Results with K-Multivalued WKB Ansatz

6.4.1 Numerical Experiments without Potential

6.4.2 Numerical Experiments with Harmonic Potential

References

7 Material Variables, Strings and Infinite Domains

7.1 Barenblatt’s Similarity Solutions and Filtration Equations

7.1.1 Material Variables and the Reciprocal Mapping

7.1.2 Stability and Consistency of the Lagrangian Scheme

7.1.3 Discrete Contraction in the Wasserstein Metric

7.2 Approximation of 1D Gravitational Navier-Stokes-Poisson

7.2.1 Reformulation of the System as a Wave Equation

7.2.2 An Elementary Dissipation Property

7.2.3 First-Order Reduction and Numerical Process

References

Part II Weakly Nonlinear Kinetic Equations

8 The Special Case of 2-Velocity Kinetic Models

8.1 A Localization Process for the Collisional Term

8.1.1 Uniform BV Estimates and Strong Compactness

8.1.2 Limiting Values of the Right-Hand Side

8.1.3 Collision Term G and Straight Line Systems
8.1.4 $L^1(\mathbb{R})$ Contraction Following Kružkov

8.2 Goldstein-Taylor Model: the Fundamental Example

8.2.1 Study in the Rarefied Regime ($\varepsilon \simeq 1$)

8.2.2 Asymptotic-Preserving in the Diffusive Regime ($\varepsilon \to 0$)

8.2.3 Numerical Results in Both Scalings

8.3 Analysis of Quasi-Monotone Well-Balanced Schemes

8.3.1 The Rarefied Regime

8.3.2 The Diffusive Regime: BV Stability

8.3.3 The Diffusive Regime: Limiting Behavior

8.3.4 Application to the Porous Media Equation

8.3.5 Application to the Advection-Diffusion Equation

8.4 Extension to Greenberg-Alt’s Model of Chemotaxis

8.4.1 Hyperbolic Scaling: Well-Balanced Construction

8.4.2 Diffusive Scaling: Asymptotic-Preserving Property

8.4.3 Numerical Results in Hyperbolic Regime

8.4.4 Numerical Results in Diffusive Regime

8.4.5 Numerical Decay Properties in Subcharacteristic Regime

8.5 Excursion in Super-Characteristic Regime

References

9 Elementary Solutions and Analytical Discrete-Ordinates for Radiative Transfer

9.1 The Method of Case’s Normal Modes Decomposition

9.1.1 Singular Elementary Solutions of the Steady-State Problem

9.1.2 The Analytical Discrete-Ordinate (ADO) Method

9.2 Well-Balanced Scheme with Exact Solver for Kinetic Regime

9.2.1 Dissipative Case $0 < c < 1$ (Adsorption and Scattering)

9.2.2 Conservative Case $c = 1$ (Purely Scattering)

9.2.3 Pure Scattering and Variable Opacity

9.3 Asymptotic-Preserving for Diffusive Regime

9.3.1 Splitting between Maxwellian and Diffusive Fluxes

9.3.2 Numerical Results for Constant ε

9.3.3 Preliminary Results for Discontinuous ε

9.4 Radiation Coupled with Temperature

9.4.1 Modeling and Theoretical Setting

9.4.2 A Positivity-Preserving Well-Balanced Scheme

9.4.3 Results on Su-Olson Benchmark

References

10 Aggregation Phenomena with Kinetic Models of Chemotaxis Dynamics

10.1 General Modeling of Chemotaxis Processes

10.1.1 One-Dimensional Reduction of Alt-Stroock’s Model
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.2 Well-Balanced Techniques for 1-D Linear Kinetic Equations</td>
<td>193</td>
</tr>
<tr>
<td>10.2 Othmer-Hillen Model: Flat Asymptotic Regimes</td>
<td>194</td>
</tr>
<tr>
<td>10.2.1 Case’s Elementary Solutions for Biased Velocity Redistribution</td>
<td>195</td>
</tr>
<tr>
<td>10.2.2 Derivation of the Corresponding Well-Balanced Scheme</td>
<td>197</td>
</tr>
<tr>
<td>10.2.3 Numerical Results: Comparison with Time-Splitting</td>
<td>200</td>
</tr>
<tr>
<td>10.3 Bouraveas-Calvez Model: Possible Concentrations</td>
<td>202</td>
</tr>
<tr>
<td>10.3.1 Approximation of a Local Forward-Backward Equation</td>
<td>202</td>
</tr>
<tr>
<td>10.3.2 Rank-One Perturbations and Sherman-Morrison Formula</td>
<td>203</td>
</tr>
<tr>
<td>10.3.3 A Strongly Non-Monotonic Decay of Residues</td>
<td>205</td>
</tr>
<tr>
<td>10.4 Another Model Motivated by Experimental Results</td>
<td>208</td>
</tr>
<tr>
<td>10.4.1 Derivation of the Corresponding Well-Balanced Scheme</td>
<td>208</td>
</tr>
<tr>
<td>10.4.2 Aggregation Process with Dirichlet Boundary Conditions</td>
<td>209</td>
</tr>
<tr>
<td>References</td>
<td>212</td>
</tr>
<tr>
<td>11 Time-Stabilization on Flat Currents with Non-Degenerate Boltzmann-Poisson Models</td>
<td>215</td>
</tr>
<tr>
<td>11.1 The Weakly Nonlinear Semiconductor Kinetic Equation</td>
<td>218</td>
</tr>
<tr>
<td>11.1.1 General Properties of the Kinetic Model</td>
<td>218</td>
</tr>
<tr>
<td>11.1.2 Maxwellian Approximation of the Acceleration Term</td>
<td>220</td>
</tr>
<tr>
<td>11.2 A Well-Balanced Scheme for “Electron Swarms”</td>
<td>221</td>
</tr>
<tr>
<td>11.2.1 The Forward-Backward Stationary Problem</td>
<td>221</td>
</tr>
<tr>
<td>11.2.2 Further Simplification for a Cheap Forward-Backward Solver</td>
<td>222</td>
</tr>
<tr>
<td>11.2.3 Derivation of the Well-Balanced Godunov Scheme</td>
<td>223</td>
</tr>
<tr>
<td>11.2.4 Boundary Conditions Rendering Ohmic Contacts</td>
<td>224</td>
</tr>
<tr>
<td>11.3 Low-Field Simulations and Numerical Results</td>
<td>225</td>
</tr>
<tr>
<td>11.3.1 Weak Collisions: Collisional Landau Damping</td>
<td>225</td>
</tr>
<tr>
<td>11.3.2 Time-Stabilization in a $\rho^+ \rho^- \rho$ Diode without Bias</td>
<td>227</td>
</tr>
<tr>
<td>11.3.3 A $\rho^+ \rho^- \rho$ Diode in Strongly Collisional Regime</td>
<td>230</td>
</tr>
<tr>
<td>11.4 Hot Electrons and Stabilization of High Field Problems</td>
<td>232</td>
</tr>
<tr>
<td>11.4.1 Chapman-Enskog Approximation</td>
<td>232</td>
</tr>
<tr>
<td>11.4.2 Construction of the High Field Well-Balanced Scheme</td>
<td>233</td>
</tr>
<tr>
<td>11.4.3 Stabilization in Time with Strong Bias</td>
<td>234</td>
</tr>
<tr>
<td>References</td>
<td>236</td>
</tr>
<tr>
<td>12 Klein-Kramers Equation and Burgers/Fokker-Planck Model of Spray</td>
<td>241</td>
</tr>
<tr>
<td>12.1 Preliminaries: Hermite Functions</td>
<td>241</td>
</tr>
<tr>
<td>12.2 The Fokker-Planck Equation without External Force</td>
<td>242</td>
</tr>
<tr>
<td>12.2.1 Full-Range Completeness of Pagani’s Eigenfunctions</td>
<td>243</td>
</tr>
<tr>
<td>12.2.2 Stability of Well-Balanced Scheme with Hyperbolic CFL</td>
<td>244</td>
</tr>
<tr>
<td>12.2.3 Asymptotic-Preserving with Parabolic Scaling</td>
<td>249</td>
</tr>
<tr>
<td>12.3 Inclusion of an External Force by a Vlasov Term</td>
<td>250</td>
</tr>
</tbody>
</table>
12.3.1 Burschka-Titulaer’s Eigenfunctions for Linear Potential . 250
12.3.2 Scattering Matrix and Well-Balanced Scheme 251
12.4 Burgers/Fokker-Planck Modeling of Two-Phase Sprays 254
12.4.1 Theoretical Results for an Elementary Model 254
12.4.2 Overall Well-Balanced Numerical Simulation 255
12.4.3 Various Numerical Results 256
References .. 259

13 A Model for Scattering of Forward-Peaked Beams 263
13.1 Analysis of the Forward-Backward Inlet Problem 263
13.2 Derivation and Testing of the Well-Balanced Scheme 264
13.2.1 Scattering Matrix and Godunov Discretization 264
13.2.2 Constant Maxwellian Stabilization in a Box 265
13.2.3 A Pencil Beam in an Inhomogeneous Environment 266
References .. 268

14 Linearized BGK Model of Heat Transfer 269
14.1 Introduction .. 269
14.1.1 A Short Review of the Boltzmann Equation 269
14.1.2 Simplified Models and Their Fluid Dynamic Approximation ... 271
14.1.3 Main Objectives of the Chapter 273
14.2 Elementary Solutions for the Linearized BGK Model 274
14.2.1 Cercignani’s Decomposition of a Time-Dependent Problem ... 274
14.2.2 Elementary Solutions of the Heat Transfer System 276
14.2.3 Consistency with Navier-Stokes-Fourier Equations 277
14.3 Well-Balanced and Analytical Discrete-Ordinate Method 278
14.3.1 Gaussian Quadrature in the Velocity Variable and ADO 278
14.3.2 Complete Time-Dependent Scheme for Heat Transfer ... 279
14.4 Balancing Steady-States with Non-Zero Macroscopic Flux .. 284
14.4.1 Details on the Stationary Equation 284
14.4.2 Steady-States with Non-Zero Macroscopic Velocity 284
14.5 Numerical Results for Heat Transfer and Sound Wave 285
14.5.1 Boundary Conditions for Walls with Different Temperatures .. 285
14.5.2 Walls with Different Accommodation Coefficients: \(\alpha_1 \neq \alpha_2 \) ... 286
14.5.3 Sound Wave in Rarefied Gas 287
14.6 What Happens When the Knudsen Number Becomes Small? .. 288
14.6.1 A Small Knudsen Number in the Whole Domain 289
14.6.2 A Computational Domain Containing Rarefied and Fluid Areas .. 290
References .. 291
Computing Qualitatively Correct Approximations of Balance Laws
Exponential-Fit, Well-Balanced and Asymptotic-Preserving
Gosse, L.
2013, XIX, 341 p., Hardcover