Contents

1 Preliminaries .. 1
 1.1 Operator Algebras and Hilbert Modules 1
 1.1.1 C^*-Algebras 1
 1.1.2 Von Neumann Algebras 4
 1.1.3 Free Product and Tensor Product 5
 1.1.4 Hilbert Modules 6
 1.2 Quantum Groups 8
 1.2.1 Hopf Algebras 8
 1.2.2 Compact Quantum Groups: Basic Definitions and Examples 10
 1.2.3 The CQG $U_{\mu}(2)$ 17
 1.2.4 The CQG $SU_{\mu}(2)$ 18
 1.2.5 The Hopf $*$-algebras $O(SU_{\mu}(2))$ and $U_{\mu}(su(2))$ 19
 1.2.6 The CQG $SO_{\mu}(3)$ 20
 1.3 Coaction of Compact Quantum Groups on a C^*-Algebra 21
 1.3.1 Coactions on Finite Quantum Spaces 22
 1.3.2 Free and Half-Liberated Quantum Groups 25
 1.3.3 The Coaction of $SO_{\mu}(3)$ on the Podles’ Spheres 27
 1.4 Dual of a Compact Quantum Group 29
 1.5 Coaction on von Neumann Algebras by Conjugation of Unitary Corepresentation 30
 References ... 33

2 Classical and Noncommutative Geometry 37
 2.1 Classical Riemannian Geometry 37
 2.1.1 Forms and Connections 37
 2.1.2 The Hodge Laplacian of a Riemannian Manifold 38
 2.1.3 Spin Groups and Spin Manifolds 39
2.1.4 Dirac Operators 40
2.1.5 Isometry Groups of Classical Manifolds 41
2.2 Noncommutative Geometry 50
 2.2.1 Spectral Triples: Definition and Examples 50
 2.2.2 The Noncommutative Space of Forms 53
 2.2.3 Laplacian in Noncommutative Geometry 56
2.3 Quantum Group Equivariance in Noncommutative
 Geometry .. 58
 2.3.1 The Example of $SU(2)$ 58
 2.3.2 The Example of the Podles’ Spheres 58
 2.3.3 Constructions from Coactions by Quantum
 Isometries 60
 2.3.4 R-twisted Volume Form Coming
 from the Modularity of a Quantum Group 63
References ... 66

3 Definition and Existence of Quantum Isometry Groups .. 69
 3.1 The Approach Based on Laplacian 69
 3.1.1 The Definition and Existence of the Quantum
 Isometry Group 70
 3.1.2 Discussions on the Admissibility Conditions .. 75
 3.2 Definition and Existence of the Quantum Group
 of Orientation Preserving Isometries 77
 3.2.1 Motivation 77
 3.2.2 Quantum Group of Orientation-Preserving
 Isometries of an R-twisted Spectral Triple 78
 3.2.3 Stability and C^* Coaction 83
 3.2.4 Comparison with the Approach Based
 on Laplacian 86
 3.3 The Case of J Preserving Quantum Isometries 90
 3.4 A Sufficient Condition for Existence of Quantum Isometry
 Groups Without Fixing the Volume Form 92
References ... 95

4 Quantum Isometry Groups of Classical and Quantum Spheres .. 97
 4.1 Classical Spheres: No Quantum Isometries 97
 4.2 Quantum Isometry Group of a Spectral Triple
 on Podles’ Sphere 99
 4.3 Descriptions of the Podles’ Spheres 100
 4.3.1 The Description as in [3] 100
 4.3.2 ‘Volume Form’ on the Podles’ Spheres 101
 4.4 Computation of the Quantum Isometry Groups 102
 4.4.1 Affineness of the Coaction 104
 4.4.2 Homomorphism Conditions 108
4.4.3 Relations Coming from the Antipode 109
4.4.4 Identification of $SO_3(3)$ as the Quantum Isometry
Group ... 111
4.5 Another Spectral Triple on the Podles’ Sphere:
A Counterexample 114
4.5.1 The Spectral Triple 115
4.5.2 Computation of the Quantum Isometry Group 117
 References ... 127

5 Quantum Isometry Groups of Discrete Quantum Spaces 129
5.1 Quantum Isometry Groups of Finite Metric Spaces
and Finite Graphs 130
5.1.2 Noncommutative Geometry on Finite Metric
Spaces ... 131
5.1.3 Quantum Symmetry Groups of Banica and Bichon
as Quantum Isometry Groups 133
5.2 Quantum Isometry Groups for Inductive Limits 136
5.2.1 Examples Coming from AF Algebras 138
5.2.2 The Example of the Middle-Third Cantor Set 143
 References .. 146

6 Nonexistence of Genuine Smooth CQG Coactions
on Classical Connected Manifolds 149
6.1 Smooth Coaction of a Compact Quantum Group
and the No-Go Conjecture 149
6.1.1 Definition of Smooth Coaction 149
6.1.2 Statement of the Conjecture and Some Positive
Evidence ... 150
6.1.3 Defining the ‘Differential’ of the Coaction 153
6.2 Brief Sketch of Proof of Nonexistence of Genuine
Quantum Isometries 155
6.3 An Example of No-Go Result Without Quadratic
Independence 158
 References ... 161

7 Deformation of Spectral Triples and Their Quantum
Isometry Groups .. 163
7.1 Cocycle Twisting 163
7.1.1 Cocycle Twist of a Compact Quantum Group 164
7.1.2 Unitary Corepresentations of a Twisted Compact
Quantum Group 166
7.1.3 Deformation of a von Neumann Algebra by Dual
Unitary 2-Cocycles 167
7.2 Deformation of Spectral Triples by Unitary Dual Cocycles 168
7.3 Quantum Isometry Groups of Deformed Spectral Triples 169
7.4 Examples and Computations 172
References 177
8 Spectral Triples and Quantum Isometry Groups on Group C^*-Algebras 179
8.1 Connes’ Spectral Triple on Group C^*-Algebras and Their Quantum Isometry Groups 180
8.1.1 Quantum Isometry Groups of $(\mathbb{C}[\Gamma], l^2(\Gamma), D_F)$ 181
8.2 The Case of Finitely Generated Abelian Groups 183
8.2.1 Computation for the Groups \mathbb{Z}_n and \mathbb{Z} 183
8.2.2 Results for the General Case 188
8.3 The Case of Free Products of Groups 190
8.3.1 Some Quantum Groups 190
8.3.2 Results for the Free Groups \mathbb{F}_n 192
8.3.3 Quantum Isometry Groups of Free Product of Finite Cyclic Groups 192
8.4 Quantum Isometry Groups as Doublings 193
8.4.1 Result for a Generating Set of Transpositions 194
8.4.2 The Case When S Has a Cycle 197
References 197
9 An Example of Physical Interest 199
9.1 Notations and Preliminaries 201
9.1.1 Generalities on Real C^*-Algebras 201
9.1.2 Quantum Isometries 202
9.2 The Finite Noncommutative Space F 203
9.2.1 The Elementary Particles and the Hilbert Space of Fermions 203
9.2.2 The Spectral Triple 204
9.2.3 A Hypothesis on the \mathcal{Y} Matrices 205
9.3 Quantum Isometries of F 206
9.3.1 QISO_F^+ in two special cases 209
9.3.2 Quantum Isometries for the Real C^* Algebra A_F 210
9.4 Quantum Isometries of $M \times F$ 211
9.5 Physical Significance of the Results 211
9.5.1 Analysis of the Result for the Minimal Standard Model 213
9.6 Invariance of the Spectral Action 214
References 217