Contents

1 Introduction ... 1
 1.1 Background of FPGA-Based Design. 1
 1.2 Limitations of FPGA CAD Tools. 2
 1.3 Overview of Design Philosophy for FPGAs. 3
 1.3.1 Target FPGA-Specific Hardware Primitive
 Instantiation ... 3
 1.4 Existing FPGA CAD Tools 4
 1.4.1 Xilinx IP Core Generator 4
 1.4.2 FloPoCo (Floating-Point Cores) 5
 1.5 Recent Works on High Performance Circuit Realization
 on Xilinx FPGAs .. 6
 1.6 Major Contributions of the Book 6
 1.7 Organization of the Book 8
 1.8 Summary ... 9
 References .. 9

2 Architecture of Target FPGA Platform 11
 2.1 Introduction ... 11
 2.2 Fabric Slice Architecture for Virtex-5 FPGAs 12
 2.3 Fabric Slice Architecture for Virtex-6 FPGAs 14
 2.4 DSP Slice Architecture for Virtex-5 and Virtex-6 FPGAs . 15
 2.5 Implementation Overview 16
 2.6 Summary ... 17
 References .. 17

3 A Fabric Component Based Design Approach
 for High-Performance Integer Arithmetic Circuits 19
 3.1 Introduction ... 19
 3.2 Existing Work .. 20
3.3 Guidelines for High-Performance Realization.

3.4 Summary

References

4 Architecture of Datapath Circuits

4.1 Introduction

4.2 Integer Adder/Subtractor Architecture

4.2.1 Hybrid Ripple Carry Adder (Hybrid RCA)

4.2.2 Xilinx DSP Slice-Based Adder

4.2.3 FloPoCo-Based Adder

4.2.4 Fast Carry Adder Using Carry-Lookahead Mechanism

4.2.5 Adder Implementation Results

4.3 Absolute Difference Circuit Architecture

4.3.1 Proposed Absolute Difference Circuit

4.3.2 DSP Slice-Based Absolute Difference Circuit

4.3.3 FloPoCo-Based Absolute Difference Circuit

4.3.4 Absolute Difference Circuit Implementation Results

4.4 Integer Multiplier Architecture

4.4.1 Unsigned Integer Multiplier

4.4.2 Two’s Complement Multiplier

4.4.3 Combined Unsigned and Two’s Complement Multiplier

4.4.4 DSP Slice-Based Signed Multiplier

4.4.5 FloPoCo-Based Signed Multiplier

4.4.6 Multiplier Implementation Results

4.5 Integer Squarer Architecture

4.5.1 Unsigned Squarers

4.5.2 Two’s Complement Squarers

4.5.3 Combined Unsigned and Two’s Complement Squarer

4.5.4 DSP Slice-Based Squarers

4.5.5 FloPoCo-Based Squarers

4.5.6 Squarer Implementation Results

4.6 Universal Shift Register Architecture

4.6.1 Universal Shift Register

4.6.2 Universal Shift Register Implementation Results

4.7 Summary

References

5 Architecture of Controlpath Circuits

5.1 Introduction

5.2 Integer Comparator Architecture

5.2.1 Proposed Comparator Architecture

5.2.2 DSP Slice-Based Comparator

5.2.3 Comparator Implementation Results
High Performance Integer Arithmetic Circuit Design on FPGA
Architecture, Implementation and Design Automation
Palchudhuri, A.; Chakraborty, R.S.
2016, XVII, 114 p. 56 illus., Hardcover