Preface

Lichens present an excellent example of symbiotic association. The unique composition of alga and fungi in lichens not only results in conferring differential sensitivity towards a range of environmental factors, but also makes them physiologically adapted and chemically diversified to combat various abiotic and biotic environmental stresses.

This book volume covers two very important aspects of lichens, i.e. biomonitoring and bioprospection. In order to understand the role of lichens as biomonitors, it is important to know the various factors which influence the growth of lichens in natural conditions.

Lichens have been known for long as bioindicators of air pollution and various studies have explored the biomonitoring potential of different lichen species. Recently, more standardised protocols have been adopted in Europe and America, which ensures the authenticity and reproducibility of lichen biomonitoring data.

Standardised methods for lichen diversity assessment not only authenticate classical approaches of lichen diversity changes related to ecological studies and air quality, but also provide an opportunity to extend to the studies related to climate change and land use changes. Lichen diversity studies coupled with remote sensing data can be used for mapping lichen species, which provide vital information regarding the present scenario and predict the future model of climate change or land use change. Applicability of lichen diversity-remote sensing studies further extends to estimating and mapping influence of pollutant in unsampled location based on sampled locations, which help to track the long-range transport of semi-volatile pollutants to high altitude ecosystems.

Lichens also play a major role in the functioning of the ecosystem by the process of soil formation (Lichens have the ability to grow on barren rock), but this characteristic is disadvantageous for conservation of ancient monuments as lichen growth results in biodeterioration. Studies on restricting lichen growth and preserving monuments are a subject of research and needs implementation of strategies for conservation of monuments.

Another aspect of lichens, which is gaining importance in recent climate change studies, is lichenometric studies, to observe glacier retreat phenomenon. As any change in shape and size of glacier provides vital information regarding climate change, therefore age of lichens growing on exposed moraines is a possible clue to retreat of glacier.
Apart from being excellent biomonitors, another not much explored aspect of lichens is their chemistry. For lichens their unique chemistry supplements physiological adaptation for sustaining in extreme climates, but for mankind lichens are a treasure house of pharmacologically important bioactive constituents capable of curing simple cough and cold to HIV and cancer.

The therapeutic potential of lichen secondary metabolites has been known since medieval times mainly through folklore and ethnobotanical uses. The main constraint which restricts its commercial utilisation is slow growth rate and low biomass of lichens. Recent advances in analytical instrumentation techniques have resulted in high throughput techniques for isolation, while highly sensitive detection techniques allow characterisation of bioactive compound even in very low quantity. Structural characterisation of bioactive compound paves the way for its synthesis in laboratory and further structural modifications.

Therefore, the book volume intends to introduce researchers to advancements in the field of lichenology with an aim to involve more active participation of multidisciplinary research in the study of lichens.
Recent Advances in Lichenology
Modern Methods and Approaches in Biomonitoring and Bioprospection, Volume 1
Upreti, D.K.; Divakar, P.K.; Shukla, V.; Bajpai, R. (Eds.)
2015, XV, 265 p. 65 illus., 42 illus. in color., Hardcover
ISBN: 978-81-322-2180-7