Contents

1 Introduction .. 1
 1.1 Potassium-Rich Silica-Poor Igneous Rocks: A Distinct Group, Different from Basaltic Rock Series 1
 1.2 Minor, Rare Earth and Trace Element Characteristics 2
 1.3 Mineralogical Peculiarities 6
 1.4 Scope of This Volume 6

2 Mineralogy ... 11
 2.1 Leucite .. 11
 2.2 K-Feldspar 16
 2.3 Plagioclase 21
 2.4 Clinopyroxene 22
 2.5 Mica ... 29
 2.6 Amphibole 35
 2.7 Olivine .. 38
 2.8 Nepheline 41
 2.9 Kalsilite .. 45
 2.10 Analcite ... 46
 2.11 Mellite .. 49
 2.12 Haüyne .. 53
 2.13 Apatite .. 55
 2.14 Spinel ... 55
 2.15 Priderite .. 60
 2.16 Wadeite .. 61
 2.17 Roedderite-Like Mineral [(Na, K)_2(Mg, Fe)_5(Si_{12}O_{30})] 64
 2.18 Pseudo-Brookite 64
 2.19 Perovskite 65
 2.20 Ilmenite .. 65
 2.21 Melanite .. 67
 2.22 Carbonate-Bearing Phases 67
3 Classification .. 69
3.1 Classification Based on Chemistry 69
 3.1.1 Potassium Content as a Basis of Classification... 69
 3.1.2 Total Alkali Versus Silica Classification 69
 3.1.3 Chemical Classifications Based on Chemistry
 and Mineralogy of Type Localities 71
 3.1.4 Major Oxides as Basis of Classification 72
3.2 Classification on the Basis of Mineralogy 74
 3.2.1 Kama fugitic Rocks Without Plagioclase 75
 3.2.2 Leucitic Rocks with Feldspars 77
3.3 Classification Based on Niggli Values 78
 3.3.1 Various Lamproitic Assemblages and Their
 Heteromorphic Relations to Each Other 82
 3.3.2 Distinctive Criteria to Differentiate Among
 Kimberlites, Lamproites and Lamprophyres 87

4 Different Localities of Potassium-Rich Silica-Undersaturated
Igneous Rocks and Their Silica-Rich Variants 89
4.1 Ultrapotassic Silica-Deficient Rocks from Asia 90
 4.1.1 Leucite-Bearing Rocks of Manchuria, China 90
 4.1.2 K-Rich Volcanics from Yangbajin Rift, Tibet 93
 4.1.3 Occurrence of K-Rich Silica-Deficient Rocks
 from Turkey .. 95
 4.1.4 Potassium-Rich Lamprophyres and Lamproites
 from Bokaro, Jharia and Raniganj Basins,
 East India 96
 4.1.5 Leucite-Bearing Rocks of Indonesia 104
4.2 Ultrapotassic Rocks of Australia 110
 4.2.1 West Kimberley 110
 4.2.2 New South Wales, Australia 113
4.3 Potassium-Rich Silica-Deficient Rocks from Africa . 117
 4.3.1 Birunga Volcanic Field 117
 4.3.2 Korath Range, Ethiopia 125
 4.3.3 The Kapamba Lamproites of the Luangwa Valley,
 Eastern Zambia 125
 4.3.4 Leucite Lamproites from Pniel, Post Masburg,
 Swartruggens, South Africa 126
 4.3.5 K-Rich Rocks from Mt. Etinde, West Africa 128
4.4 The Lamproitic Rocks from Antarctica 128
4.5 Potassium-Rich Silica-Undersaturated Igneous Rocks
 of the United States of America 129
 4.5.1 Volcanic Fields of Highwood Mountains,
 Montana 129
 4.5.2 The Bearpaw Mountains 133
4.5.3 Smoky Butte ... 137
4.5.4 Potassic Rocks of Navajo-Hopi Province 138
4.5.5 Dulce Dike ... 140
4.5.6 Spanish Peaks ... 140
4.5.7 Two Buttes, Colorado. 142
4.5.8 Potassic Rocks from Leucite Hills, Wyoming 142
4.5.9 The Potassic Lava Suite from Central Sierra Nevada, California, U.S.A. 145
4.5.10 Pliocene Potassic Volcanic Rocks from Deep Springs Valley, California 147
4.5.11 Other Localities in U.S.A 148

4.6 Potassium-Rich Silica–Under Saturated Rocks from Brazil . 148

4.7 Silica-Undersaturated Potassic Lavas from Canada 152
4.7.1 Kirkland Lake, Ontario 152
4.7.2 Spotted Fawn Creek, Yukon 153

4.8 The K-Rich Silica–Poor Lavas of Europe 153
4.8.1 Ultrapotassic Rocks of Germany 153
4.8.2 Tertiary and Quaternary Magmatism in Massif Central France ... 156
4.8.3 K-Rich Rocks from Lower Austria 160
4.8.4 Potassic Volcanism in Italy 161
4.8.5 Volcanic Province of Spain 185
4.8.6 Late Cenozoic Leucite Lamproites from the East European Alpine Belt (Macedonia and Yugoslavia). 186

4.9 Lamproitic Rocks from Greenland. 188
4.9.1 Batbjerg Complex ... 188
4.9.2 Holtsteinberg Lamproit from Greenland 188
4.9.3 Kap Dalton (69°24'N, 24°10'W) 191

4.10 K-Rich Feldspathoidal Rocks from Colima, Mexico 192

4.11 K-Rich Rocks from Paraguay 193

4.12 K-Rich Feldspathoidal-Bearing Rocks from the Former U.S.S.R. .. 194
4.12.1 Tezhsar (40°41'N, 44°39'E) 194
4.12.2 Elpinskii (39°27'N, 46°09'E) 194
4.12.3 Pkhrutskii (38°51'N, 48°10'E) 195
4.12.4 Talyshskii (38°45'N, 48°22'E) 195
4.12.5 Ishimskii Complex (51°17'N, 66°33'E) 195
4.12.6 Daubabinskoe (42°28'N, 70°07'E) 195
4.12.7 Kaindy (42°21'N, 70°35'E) 196
4.12.8 Irisu (42°20'N, 70°27'E) 196
4.12.9 Kolbashinskii (42°20'N, 73°44'E) 197
4.12.10 Synnyr (56°55'N, 111°20'E) 197
4.12.11 Yaksha (56°55'N, 111°48'E) 197
4.12.12 Molbo (59°05′N, 118°49′E) 198
4.12.13 Tommot (58°23′N, 125°13′E) 198
4.12.14 Yakokut (58°27′N, 125°29′E) 199
4.12.15 Rododendron (58°22′N, 125°36′E) 199
4.12.16 Lomam (57°07′N, 128°05′E) 201
4.12.17 Tokko (55°36′N, 130°00′E) 201
4.12.18 Dezhnevski Complex (66°05′N, 169°47′W) .. 201
4.12.19 Andriyanovka (54°45′N, 158°30′E) 202
4.12.20 Pyatistennyl (67°52′N, 161°36′E) 202
4.12.21 Artem (43°46′N, 132°28′E) 202

4.13 Potassium-Rich Rocks from Oceanic Islands 203
4.13.1 Volcanic Activity in the Aeolian Arc Region ... 203
4.13.2 K-Rich Rocks of the Tristan da Cunha Islands . 204
4.13.3 Trachyte-Phonolite-Bearing Lavas of Ulleung Island, South Korea 206

5 Minor and Rare Earth Element Geochemistry of K-Rich Silica-Undersaturated Igneous Rocks 211
5.1 The Minor and Rare Earth Element Characteristics of Lamproites from Damodar Valley Coal Fields 211
5.1.1 Nitrogen Content of Gondwana Potassic Rocks ... 212
5.1.2 Major and Trace Elements 212
5.2 The REE and Minor Element Geochemistry of Birunga and Toro-ankole Rocks 215
5.3 The Rare Earth Element and Trace Element Geochemistry of Lamproites from Western Australia, Leucite Hills (U.S.A.) and Gaussberg (Antarctica) ... 222
5.4 Minor Element Geo-chemistry of Potassium–Rich Silica-Deficient Volcanic Rocks from Italy 224
5.5 The REE and Trace Element Geochemistry of K-Rich Volcanic Rocks of Smoky Butte 232
5.6 Minor and REE Geochemistry of K-Rich Silica-Deficient Volcanic Rocks from Highwood Mountains 234
5.7 Minor Element Contents of Potassic Volcanic Rocks from N.E. China 235
5.8 Trace Element Geochemistry for Ringgit-Beser Complex (Indonesia) 239
5.9 Synthesis of Trace Element and Isotopic Data by Nelson (1992) 243
6 Chemical and Physical Constraints for Crystallization of Feldspathoids and Melilite in Potassium-Rich Rocks 245
 6.1 P–T Conditions Related to Leucite Stability 245
 6.1.1 Stability of Leucite .. 245
 6.1.2 Melilite Stability ... 247
 6.1.3 Appearance of Melilite in the Join Diopside–Nepheline 248
 6.2 Partial Pressure of Oxygen Related to Genesis of K-Rich Volcanic Rocks ... 252
 6.2.1 Oxygen Fugacity Related to Stability of Annite 252
 6.2.2 The Fe$^{3+}$/Fe$^{2+}$ Ratio for Determination of Oxygen Fugacity in Potassic Rocks ... 252
 6.2.3 Oxide Phases as an Indicator for f(O$_2$) Condition of Formation of Potassic Rocks 253
 6.3 Determination of Oxygen Fugacity in Potassic Rocks Based on the Presence of Picroilmenite 255
 6.4 Oxidation Path of a Leucitite Magma with Respect to CO$_2$ Solubility .. 255
 6.5 The Ascent Rate of Diamond and Phlogopite-Bearing Olivine Lamproite or a Kimberlitic Magma 257

7 Ternary Systems with Feldspathoids 259
 7.1 The System Nepheline–Kalsilite–SiO$_2$ Under Variable P–T Conditions at or Below 5 Kb in Presence of Excess Water ... 259
 7.2 Phase Relations in the System Nepheline–Kalsilite–SiO$_2$
 at 2 Gpa [P(H$_2$O) = P(Total)] 265
 7.3 Genesis of Pseudoleucite with Reference to Nepheline–Kalsilite–Silica System .. 271
 7.4 Survival of Leucite; Alteration to Analcite 273

8 Incompatible Mineral Pairs in K-Rich Rocks 277
 8.1 Incompatibility Between Leucite and Orthopyroxene 277
 8.2 Incompatible Relation Between Leucite and Sodic-Plagioclase 279
 8.2.1 Phase Relations in the Join Leucite–Albite
 under Atmospheric Pressure 279
 8.2.2 The Leucite–Albite–Anorthite Join 281
 8.2.3 Petrological Implications 282
 8.3 Incompatibility Between Melilite–Plagioclase in Leucite-Bearing Lavas ... 284

9 Leucite- and Feldspar-Bearing Systems 289
 9.1 Study of the System Diopside–Nepheline–Leucite
 The Join Diopside–Nepheline–Sanidine Under Atmospheric Pressure ... 290
9.2 Experimental Study of the System Diopside–Nepheline–Sanidine at 0.1, 1 and 2 GPa and Variable Temperatures .. 291

9.2.1 Phase Relations in the System Diopside–Nepheline–Sanidine at 0.1 GPa $[P(H_2O) = P(Total)]$.. 292

9.2.2 Experimental Study of the System at 1 and 2 GPa $[P(H_2O) = P(Total)]$... 294

9.2.3 Petrological Significance .. 295

9.3 The System KAlSi$_3$O$_8$–CaAl$_2$Si$_2$O$_8$–KAlSiO$_4$ at 0.5 GPa 301

9.4 The System Forsterite–Diopside–Leucite–Anorthite 303

9.4.1 The Join Forsterite–Diopside–Anorthite 303

9.4.2 The Join Forsterite–Anorthite–Leucite 303

9.4.3 The Join Diopside–Leucite–Anorthite 304

9.4.4 Paragenesis ... 304

9.5 The System Diopside–Leucite–Anorthite–SiO$_2$ 306

9.5.1 Course of Crystallization of Liquid in the System Diopside–Leucite–Anorthite–SiO$_2$... 306

10 Melilite- and Leucite-Bearing Systems 311

10.1 Melilite- and Leucite-Bearing Systems Without Nepheline ... 311

10.1.1 The System Forsterite–Diopside–Akermanite–Leucite 311

10.2 Melilite- and Leucite-Bearing Mafic and Ultramafic Rocks Containing Nepheline 317

10.2.1 The System Diopside–Nepheline– Akermanite–Leucite 317

10.3 Experimental Study of the Joins Forsterite—Diopside— Leucite and Forsterite—Leucite—Akermanite up to 2.3 GPa $[P(H_2O) = P(Total)]$ and Variable Temperatures 324

10.3.1 Introduction. .. 324

10.3.2 The Join Forsterite–Diopside–Leucite at 0.1 GPa $[P(H_2O) = P(Total)]$... 326

10.3.3 The Join Forsterite–Diopside–Leucite Studied under 2.3 GPa and Variable Temperatures 327

10.3.4 The Join Forsterite–Leucite–Akermanite Studied at 2.3 GPa and Variable Temperatures 330

10.3.5 The Paragenetic Sequence in the Kalsilite–CaO–MgO–SiO$_2$–H$_2$O System 330

10.4 Petrological Significance .. 332

10.4.1 The Join Forsterite–Diopside–Leucite Studied under 0.1 GPa $[P(H_2O) = P(Total)]$ 332
10.4.2 The Join Forsterite–Diopside–Leucite Studied under 2.3 GPa at Variable Temperatures 333
10.4.3 The Join Forsterite–Leucite–Akermanite Studied at 2.3 GPa and Variable Temperatures 334

11 Phase Relations in the System Leucite-Akermanite-Albite-SiO₂ ... 337
11.1 Phase Relations in the System Leucite-Akermanite-SiO₂ ... 339
11.2 Study of the Joins Lc₇₅Ab₂₅-Ak₇₅Ab₂₅-Q₇₅Ab₂₅ and Lc₆₀Ab₄₀-Ak₆₀Ab₄₀-Q₆₀Ab₄₀ 340
11.3 Petrological Significance of the System Leucite-Akermanite-Albite-SiO₂ .. 341
11.4 Experimental Study of the Joins Leucite-Akermanite-Albite with or Without Anorthite in Air or Under 1 Gpa in Presence of Excess Water .. 344
11.4.1 The Join Leucite-Akermanite-Albite Under One Atmospheric Pressure 345
11.4.2 The Join Leucite-Akermanite-Albite₅₀ Anorthite₅₀ Under Atmospheric Pressure 346
11.4.3 The Join Leucite-Akermanite-Albite₅₀ Anorthite₅₀ at 1 GPa Under H₂O-Saturated Condition 348

12 P-T Stability of Phlogopite, K-Richterite and Phengite, as a Source of Potassium in the Mantle 351
12.1 Phase Relations in the System Forsterite–Kalsilite-SiO₂–H₂O at Variable Temperatures up to 0.3 Gpa .. 351
12.2 P-T Stability of Phlogopite .. 355
12.2.1 P-T Stability of Phlogopite up to 7 GPa in Presence of Excess Water 356
12.3 The Join KALSiO₄–Mg₂SiO₄–SiO₂ up to 3.0 Gpa in Presence or Absence of H₂O 357
12.4 Investigation of the System KALSiO₄–Mg₂SiO₄–SiO₂ in Presence of H₂O and CO₂ up to 2 Gpa 364
12.5 Investigation of the System Forsterite–Kalsilite-SiO₂ at 2.8 Gpa under Dry or Volatile Present Conditions, (in Presence of H₂O or CO₂) .. 366
12.6 Phase Relations in the System KALSiO₄–Mg₂SiO₄–SiO₂ at 2.8 Gpa in Presence of Fluorine 371
12.7 Investigation on the Assemblage Phlogopite-Diopside up to 17 Gpa ... 374
12.8 K-Richterite as a Source Mineral of Potassium
in the Upper Mantle .. 375
12.8.1 P-T Stability of K-Richterite 375
12.8.2 Investigation on High Pressure Stability
of Phengite .. 378

13 Experimental Studies on K-Rich Rocks 381
13.1 Investigations of Leucite-Bearing Rocks Under
Atmospheric Pressure .. 381
13.2 Investigation on a Synthetic Leucite Basanite
and Melilite-Nepheline Leucitite up to 2.5 GPa
and Variable Temperatures 383
 13.2.1 Investigation on a Natural Leucite Basanite
 and a Tephrite .. 383
 13.2.2 Investigation on a Synthetic Melilite Nepheline
 Leucitite in Presence of Excess Water 387
 13.2.3 Experimental Study on a 79 AD Vesuvian
 Lava Flow ... 389
 13.2.4 Phase Relations on Katungites 389
 13.2.5 Investigation on a Leucite Lamproite
 from Gaussberg, Antarctica 396
 13.2.6 Phase Equilibria Studies on (Lamproites
 from Damodar Valley, India 398
 13.2.7 Experimental Investigation on a Natural
 Wolgidite ... 402
 13.2.8 Phase Relations on a Biotite Mafurites
 under High P–T Conditions 404
 13.2.9 Phase Relations in an Olivine Ugandite
 under High P–T Conditions 410
 13.2.10 Experimental Investigation on a Phlogopite-Bearing
 Minette .. 412
 13.2.11 Experimental Studies on a Phlogopite-Pyroxenite
 Nodule from South-West Uganda 413
 13.2.12 High P–T Investigation
 on an Armalcolite-Phlogopite Lamproite
 from Smoky Butte, Montana 414
 13.2.13 Phase Relations in a Sanidine Phlogopite
 Lamproite under High P–T Conditions 416
 13.2.14 Experimental Study on an Olivine Leucitite
 up to 3.5 GPa at Variable Temperatures 419
14 Structural and Tectonic Evolution of K-Rich Silica-Deficient Volcanic Provinces of Different Continents

14.1 Tectonism in European Volcanic Provinces
- 14.1.1 Development of the Rhine Rift Valley
- 14.1.2 Structure and Tectonic History Associated with Potassic Volcanism in Italy
- 14.1.3 Neogene Tectonics of Southern Spain
- 14.1.4 Mantle Upwelling Beneath Eastern Atlantic and Western and Central Europe

14.2 Deep-Seated Plumes Underneath the East African Rift Valleys

14.3 Tectonic Evolution of Silica-Deficient Potassic Rocks from Brazil with Reference to Trinidade Plume

14.4 Structural Control and Tectonic History of Potassium-Rich Volcanic Province of Asia
- 14.4.1 The East Indian Rift Zone
- 14.4.2 Tectonic Setting of K-Rich Rocks from Indonesian Archipelago

14.5 Plate Tectonic Model for Potassic Volcanism in the USA
- 14.5.1 Tectonic History of Potassic Volcanism in the Highwood Mountains Region
- 14.5.2 Generation of Potassic Rocks Associated with Rio Grande Rift

15 Genesis of Ultrapotassic Rocks

15.1 Assimilation Processes
15.2 Subtraction of Eucalite from a Picrite Magma
15.3 Zone Refining Hypothesis
15.4 Genesis of Potassic Rocks by Volatile Transport
15.5 Phlogopite-Richterite-Bearing Peridotitic Mantle
15.6 Production of Fertile Source Rocks by Mantle Metasomatism
15.7 Crust-Mantle Mixing
15.8 Metasomatic Fluid Source
15.9 Crustal Contamination
15.10 Recycling of Nitrogen from Crust into the Mantle
15.11 Recycling of Potassium from Subducted Oceanic Crust
15.12 Metasomatic Fluid Transport
Origin of Potassium-rich Silica-deficient Igneous Rocks
Gupta, A.K.
2015, XXIII, 536 p. 229 illus., Hardcover
ISBN: 978-81-322-2082-4