Contents

1 Introduction .. 1

1.1 Potassium-Rich Silica-Poor Igneous Rocks: A Distinct Group, Different from Basaltic Rock Series 1
1.2 Minor, Rare Earth and Trace Element Characteristics 2
1.3 Mineralogical Peculiarities 6
1.4 Scope of This Volume 6

2 Mineralogy ... 11

2.1 Leucite .. 11
2.2 K-Feldspar .. 16
2.3 Plagioclase ... 21
2.4 Clinopyroxene ... 22
2.5 Mica .. 29
2.6 Amphibole ... 35
2.7 Olivine .. 38
2.8 Nepheline ... 41
2.9 Kalsilite ... 45
2.10 Analcite .. 46
2.11 Melilite .. 49
2.12 Haüyne .. 53
2.13 Apatite ... 55
2.14 Spinel ... 55
2.15 Priderite .. 60
2.16 Wadeite ... 61
2.17 Roedderite-Like Mineral \[(Na, K)_{2}(Mg, Fe)_{5}(Si_{12}O_{30})\] 64
2.18 Pseudo-Brookite .. 64
2.19 Perovskite .. 65
2.20 Ilmenite ... 65
2.21 Melanite ... 67
2.22 Carbonate-Bearing Phases 67
Contents

3 Classification

- 3.1 Classification Based on Chemistry .. 69
 - 3.1.1 Potassium Content as a Basis of Classification 69
 - 3.1.2 Total Alkali Versus Silica Classification 69
 - 3.1.3 Chemical Classifications Based on Chemistry and Mineralogy of Type Localities 71
 - 3.1.4 Major Oxides as Basis of Classification 72
- 3.2 Classification on the Basis of Mineralogy 74
 - 3.2.1 Kamafugitic Rocks Without Plagioclase 75
 - 3.2.2 Leucitic Rocks with Feldspars 77
- 3.3 Classification Based on Niggli Values 78
 - 3.3.1 Various Lamproitic Assemblages and Their Heteromorphic Relations to Each Other 82
 - 3.3.2 Distinctive Criteria to Differentiate Among Kimberlites, Lamproites and Lamprophyres 87

4 Different Localities of Potassium-Rich Silica-Undersaturated Igneous Rocks and Their Silica-Rich Variants 89

- 4.1 Ultrapotassic Silica-Deficient Rocks from Asia 90
 - 4.1.1 Leucite-Bearing Rocks of Manchuria, China 90
 - 4.1.2 K-Rich Volcanics from Yangbajin Rift, Tibet 93
 - 4.1.3 Occurrence of K-Rich Silica-Deficient Rocks from Turkey ... 95
 - 4.1.4 Potassium-Rich Lamprophyres and Lamproites from Bokaro, Jharia and Raniganj Basins, East India 96
 - 4.1.5 Leucite-Bearing Rocks of Indonesia 104
- 4.2 Ultrapotassic Rocks of Australia 110
 - 4.2.1 West Kimberley .. 110
 - 4.2.2 New South Wales, Australia 113
- 4.3 Potassium-Rich Silica-Deficient Rocks from Africa 117
 - 4.3.1 Birunga Volcanic Field ... 117
 - 4.3.2 Korath Range, Ethiopia .. 125
 - 4.3.3 The Kapamba Lamproites of the Luangwa Valley, Eastern Zambia ... 125
 - 4.3.4 Leucite Lamproites from Pniel, Post Masburg, Swartruggens, South Africa 126
 - 4.3.5 K-Rich Rocks from Mt. Etinde, West Africa 128
- 4.4 The Lamproitic Rocks from Antarctica 128
- 4.5 Potassium-Rich Silica-Undersaturated Igneous Rocks of the United States of America 129
 - 4.5.1 Volcanic Fields of Highwood Mountains, Montana ... 129
 - 4.5.2 The Bearpaw Mountains ... 133
4.5.3 Smoky Butte ... 137
4.5.4 Potassic Rocks of Navajo-Hopi Province 138
4.5.5 Dulce Dike .. 140
4.5.6 Spanish Peaks .. 140
4.5.7 Two Buttes, Colorado 142
4.5.8 Potassic Rocks from Leucite Hills, Wyoming 142
4.5.9 The Potassic Lava Suite from Central Sierra Nevada, California, U.S.A. 145
4.5.10 Pliocene Potassic Volcanic Rocks from Deep Springs Valley, California 147
4.5.11 Other Localities in U.S.A 148
4.6 Potassium-Rich Silica—Under Saturated Rocks from Brazil 148
4.7 Silica-Undersaturated Potassic Lavas from Canada 152
4.7.1 Kirkland Lake, Ontario 152
4.7.2 Spotted Fawn Creek, Yukon 153
4.8 The K-Rich Silica—Poor Lavas of Europe 153
4.8.1 Ultrapotassic Rocks of Germany 153
4.8.2 Tertiary and Quaternary Magmatism in Massif Central France 156
4.8.3 K-Rich Rocks from Lower Austria 160
4.8.4 Potassic Volcanism in Italy 161
4.8.5 Volcanic Province of Spain 185
4.8.6 Late Cenozoic Leucite Lamproites from the East European Alpine Belt (Macedonia and Yugoslavia). 186
4.9 Lamproitic Rocks from Greenland 188
4.9.1 Batbjerg Complex 188
4.9.2 Holtsteinberg Lamproit from Greenland 188
4.9.3 Kap Dalton (69°24′N, 24°10′W) 191
4.10 K-Rich Feldspathoidal Rocks from Colima, Mexico 192
4.11 K-Rich Rocks from Paraguay 193
4.12 K-Rich Feldspathoid-Bearing Rocks from the Former U.S.S.R ... 194
4.12.1 Tezhsar (40°41′N, 44°39′E) 194
4.12.2 Elpinski (39°27′N, 46°09′E) 194
4.12.3 Pkhrotuskii (38°51′N, 48°10′E) 195
4.12.4 Talyshkii (38°45′N, 48°22′E) 195
4.12.5 Ishimskii Complex (51°17′N, 66°33′E) 195
4.12.6 Daubabinskoe (42°28′N, 70°07′E) 195
4.12.7 Kaindy (42°21′N, 70°35′E) 196
4.12.8 Irisu (42°20′N, 70°27′E) 196
4.12.9 Kolbashinskii (42°20′N, 73°44′E) 197
4.12.10 Synnyr (56°55′N, 111°20′E) 197
4.12.11 Yaksha (56°55′N, 111°48′E) 197
4.12.12 Molbo (59°05'N, 118°49'E) 198
4.12.13 Tommot (58°23'N, 125°13'E) 198
4.12.14 Yakokut (58°27'N, 125°29'E) 199
4.12.15 Rododendron (58°22'N, 125°36'E) 199
4.12.16 Lomam (57°07'N, 128°05'E) 201
4.12.17 Tokko (55°36'N, 130°00'E) 201
4.12.18 Dezhnevski Complex (66°05'N, 169°47'W) 201
4.12.19 Andriyanovka (54°45'N, 158°30'E) 202
4.12.20 Pyatistennyl (67°52'N, 161°36'E) 202
4.12.21 Artem (43°46'N, 132°28'E) 202
4.13 Potassium-Rich Rocks from Oceanic Islands 203
4.13.1 Volcanic Activity in the Aeolian Arc Region 203
4.13.2 K-Rich Rocks of the Tristan da Cunha Islands 204
4.13.3 Trachyte-Phonolite-Bearing Lavas of Ulleung Island, South Korea 206

5 Minor and Rare Earth Element Geochemistry of K-Rich Silica-Undersaturated Igneous Rocks 211
5.1 The Minor and Rare Earth Element Characteristics of Lamproites from Damodar Valley Coal Fields 211
5.1.1 Nitrogen Content of Gondwana Potassic Rocks 212
5.1.2 Major and Trace Elements 212
5.2 The REE and Minor Element Geochemistry of Birunga and Toro-ankole Rocks 215
5.3 The Rare Earth Element and Trace Element Geochemistry of Lamproites from Western Australia, Leucite Hills (U.S.A.) and Gaussberg (Antarctica) 222
5.4 Minor Element Geo-chemistry of Potassium–Rich Silica-Deficient Volcanic Rocks from Italy 224
5.5 The REE and Trace Element Geochemistry of K-Rich Volcanic Rocks of Smoky Butte 232
5.6 Minor and REE Geochemistry of K-Rich Silica-Deficient Volcanic Rocks from Highwood Mountains 234
5.7 Minor Element Contents of Potassic Volcanic Rocks from N.E. China 235
5.8 Trace Element Geochemistry for Ringgit-Beser Complex (Indonesia) 239
5.9 Synthesis of Trace Element and Isotopic Data by Nelson (1992) 243
6 Chemical and Physical Constraints for Crystallization of Feldspathoids and Melilite in Potassium-Rich Rocks

6.1 P–T Conditions Related to Leucite Stability

6.1.1 Stability of Leucite

6.1.2 Melilite Stability

6.1.3 Appearance of Melilite in the Join Diopside–Nepheline

6.2 Partial Pressure of Oxygen Related to Genesis of K-Rich Volcanic Rocks

6.2.1 Oxygen Fugacity Related to Stability of Annite

6.2.2 The Fe³⁺/Fe²⁺ Ratio for Determination of Oxygen Fugacity in Potassic Rocks

6.2.3 Oxide Phases as an Indicator for f(O₂) Condition of Formation of Potassic Rocks

6.3 Determination of Oxygen Fugacity in Potassic Rocks Based on the Presence of Picroilmenite

6.4 Oxidation Path of a Leucitite Magma with Respect to CO₂ Solubility

6.5 The Ascent Rate of Diamond and Phlogopite-Bearing Olivine Lamproite or a Kimberlitic Magma

7 Ternary Systems with Feldspathoids

7.1 The System Nepheline–Kalsilite–SiO₂ Under Variable P–T Conditions at or Below 5 Kb in Presence of Excess Water

7.2 Phase Relations in the System Nepheline–Kalsilite–SiO₂ at 2 Gpa [P(H₂O) = P(Total)]

7.3 Genesis of Pseudoleucite with Reference to Nepheline–Kalsilite–Silica System

7.4 Survival of Leucite; Alteration to Analcite

8 Incompatible Mineral Pairs in K-Rich Rocks

8.1 Incompatibility Between Leucite and Orthopyroxene

8.2 Incompatible Relation Between Leucite and Sodic-Plagioclase

8.2.1 Phase Relations in the Join Leucite–Albite under Atmospheric Pressure

8.2.2 The Leucite–Albite–Anorthite Join

8.2.3 Petrological Implications

8.3 Incompatibility Between Melilite–Plagioclase in Leucite-Bearing Lavas

9 Leucite- and Feldspar-Bearing Systems

9.1 Study of the System Diopside–Nepheline–Leucite

The Join Diopside–Nepheline–Sanidine Under Atmospheric Pressure
9.2 Experimental Study of the System
Diopside–Nepheline–Sanidine at 0.1, 1 and 2 GPa
and Variable Temperatures 291
9.2.1 Phase Relations in the System
Diopside–Nepheline–Sanidine at 0.1 GPa
\[P(H_2O) = P(\text{Total}) \] 292
9.2.2 Experimental Study of the System at 1 and 2 GPa
\[P(H_2O) = P(\text{Total}) \] 294
9.2.3 Petrological Significance 295
9.3 The System KAlSi_3O_8–CaAl_2Si_2O_8–KAlSiO_4 at 0.5 GPa 301
9.4 The System Forsterite–Diopside–Leucite–Anorthite 303
9.4.1 The Join Forsterite–Diopside–Anorthite 303
9.4.2 The Join Forsterite–Anorthite–Leucite 303
9.4.3 The Join Diopside–Leucite–Anorthite 304
9.4.4 Paragenesis ... 304
9.5 The System Diopside–Leucite–Anorthite–SiO_2 306
9.5.1 Course of Crystallization of Liquid
in the System Diopside–Leucite–Anorthite–SiO_2 306
10 Melilite- and Leucite-Bearing Systems 311
10.1 Melilite- and Leucite-Bearing Systems Without Nepheline 311
10.1.1 The System Forsterite–Diopside–
Akermanite–Leucite 311
10.2 Melilite- and Leucite-Bearing Mafic and Ultramafic
Rocks Containing Nepheline 317
10.2.1 The System Diopside–Nepheline–
Akermanite–Leucite 317
10.3 Experimental Study of the Joins Forsterite—Diopside—
Leucite and Forsterite—Leucite—Akermanite up to 2.3 GPa
\[P(H_2O) = P(\text{Total}) \] and Variable Temperatures 324
10.3.1 Introduction .. 324
10.3.2 The Join Forsterite–Diopside–Leucite at 0.1 GPa
\[P(H_2O) = P(\text{Total}) \] 326
10.3.3 The Join Forsterite–Diopside–Leucite Studied
under 2.3 GPa and Variable Temperatures 327
10.3.4 The Join Forsterite–Leucite–Akermanite Studied
at 2.3 GPa and Variable Temperatures 330
10.3.5 The Paragenetic Sequence
in the Kalsilite–Cao–MgO–SiO_2–H_2O System 330
10.4 Petrological Significance 332
10.4.1 The Join Forsterite–Diopside–Leucite Studied
under 0.1 GPa \[P(H_2O) = P(\text{Total}) \] 332
10.4.2 The Join Forsterite–Diopside–Leucite Studied under 2.3 GPa at Variable Temperatures 333
10.4.3 The Join Forsterite–Leucite–Akermanite Studied at 2.3 GPa and Variable Temperatures 334

11 Phase Relations in the System Leucite-Akermanite-Albite-SiO₂ 337
11.1 Phase Relations in the System Leucite-Akermanite-SiO₂ 339
11.2 Study of the Joins Lc₇₅Ab₂₅-Ak₇₅Ab₂₅-Q₇₅Ab₂₅ and Lc₆₀Ab₄₀-Ak₆₀Ab₄₀-Q₆₀Ab₄₀ 340
11.3 Petrological Significance of the System Leucite-Akermanite-Albite-SiO₂ 341
11.4 Experimental Study of the Joins Leucite-Akermanite-Albite with or Without Anorthite in Air or Under 1 Gpa in Presence of Excess Water 344
11.4.1 The Join Leucite-Akermanite-Albite Under One Atmospheric Pressure 345
11.4.2 The Join Leucite-Akermanite-Albite₅₀ Anorthite₅₀ Under Atmospheric Pressure 346
11.4.3 The Join Leucite-Akermanite-Albite₅₀ Anorthite₅₀ at 1 GPa Under H₂O-Saturated Condition 348

12 P-T Stability of Phlogopite, K-Richterite and Phengite, as a Source of Potassium in the Mantle 351
12.1 Phase Relations in the System Forsterite–Kalsilite-SiO₂–H₂O at Variable Temperatures up to 0.3 Gpa 351
12.2 P-T Stability of Phlogopite 355
12.2.1 P-T Stability of Phlogopite up to 7 GPa in Presence of Excess Water 356
12.3 The Join KALSiO₄–Mg₂SiO₄–SiO₂ up to 3.0 Gpa in Presence or Absence of H₂O 357
12.4 Investigation of the System KALSiO₄–Mg₂SiO₄–SiO₂ in Presence of H₂O and CO₂ up to 2 Gpa 364
12.5 Investigation of the System Forsterite–Kalsilite-SiO₂ at 2.8 Gpa under Dry or Volatile Present Conditions, (in Presence of H₂O or CO₂) 366
12.6 Phase Relations in the System KALSiO₄–Mg₂SiO₄–SiO₂ at 2.8 Gpa in Presence of Fluorine 371
12.7 Investigation on the Assemblage Phlogopite-Diopside up to 17 Gpa 374
12.8 K-Richterite as a Source Mineral of Potassium
in the Upper Mantle .. 375
12.8.1 P-T Stability of K-Richterite 375
12.8.2 Investigation on High Pressure Stability
of Phengite ... 378

13 Experimental Studies on K-Rich Rocks 381
13.1 Investigations of Leucite-Bearing Rocks Under
Atmospheric Pressure 381
13.2 Investigation on a Synthetic Leucite Basanite
and Melilite-Nepheline Leucitite up to 2.5 Gpa
and Variable Temperatures 383
13.2.1 Investigation on a Natural Leucite Basanite
and a Tephrite ... 383
13.2.2 Investigation on a Synthetic Melilite Nepheline
Leucitite in Presence of Excess Water 387
13.2.3 Experimental Study on a 79 AD Vesuvian
Lava Flow .. 389
13.2.4 Phase Relations on Katungites 389
13.2.5 Investigation on a Leucite Lamproite
from Gaussberg, Antarctica 396
13.2.6 Phase Equilibria Studies on (Lamproites
from Damodar Valley, India 398
13.2.7 Experimental Investigation on a Natural
Wolgidite .. 402
13.2.8 Phase Relations on a Biotite Mafurites
under High P–T Conditions 404
13.2.9 Phase Relations in an Olivine Ugandite
under High P–T Conditions 410
13.2.10 Experimental Investigation on a Phlogopite-Bearing
Minette ... 412
13.2.11 Experimental Studies on a Phlogopite-Pyroxenite
Nodule from South-West Uganda 413
13.2.12 High P–T Investigation
on an Armalcolite-Phlogopite Lamproite
from Smoky Butte, Montana 414
13.2.13 Phase Relations in a Sanidine Phlogopite
Lamproite under High P–T Conditions 416
13.2.14 Experimental Study on an Olivine Leucitite
up to 3.5 GPa at Variable Temperatures 419
14 Structural and Tectonic Evolution of K-Rich Silica-Deficient Volcanic Provinces of Different Continents

14.1 Tectonism in European Volcanic Provinces

14.1.1 Development of the Rhine Rift Valley

14.1.2 Structure and Tectonic History Associated with Potassic Volcanism in Italy

14.1.3 Neogene Tectonics of Southern Spain

14.1.4 Mantle Upwelling Beneath Eastern Atlantic and Western and Central Europe

14.2 Deep-Seated Plumes Underneath the East African Rift Valleys

14.3 Tectonic Evolution of Silica-Deficient Potassic Rocks from Brazil with Reference to Trinidade Plume

14.4 Structural Control and Tectonic History of Potassium-Rich Volcanic Province of Asia

14.4.1 The East Indian Rift Zone

14.4.2 Tectonic Setting of K-Rich Rocks from Indonesian Archipelago

14.5 Plate Tectonic Model for Potassic Volcanism in the USA

14.5.1 Tectonic History of Potassic Volcanism in the Highwood Mountains Region

14.5.2 Generation of Potassic Rocks Associated with Rio Grande Rift

15 Genesis of Ultrapotassic Rocks

15.1 Assimilation Processes

15.2 Subtraction of Eclogite from a Picrite Magma

15.3 Zone Refining Hypothesis

15.4 Genesis of Potassic Rocks by Volatile Transport

15.5 Phlogopite–Richterite-Bearing Peridotitic Mantle

15.6 Production of Fertile Source Rocks by Mantle Metasomatism

15.7 Crust–Mantle Mixing

15.8 Metasomatic Fluid Source

15.9 Crustal Contamination

15.10 Recycling of Nitrogen from Crust into the Mantle

15.11 Recycling of Potassium from Subducted Oceanic Crust

15.12 Metasomatic Fluid Transport
15.13 Potassic Volcanism Associated with Rift
and Tectonic Processes 470
15.14 Possible Causes for the Frequent Occurrence
of K-Rich Silica-Poor Volcanic Rocks in the Recent
Evolutionary History of the Earth 473

16 Petrologic Conclusions 475

References .. 479

Author Index ... 511

Subject Index .. 521
Origin of Potassium-rich Silica-deficient Igneous Rocks
Gupta, A.K.
2015, XXIII, 536 p. 229 illus., Hardcover
ISBN: 978-81-322-2082-4