Contents

1 Introduction to FK Spaces ... 1
 1.1 Classical Sequence Spaces 1
 1.2 Linear Metric Spaces .. 3
 1.3 Paranormed Spaces ... 5
 1.4 FK and BK Spaces ... 10
 1.5 Matrix Domains ... 18
 1.6 Sequence Spaces of Matrix Domains 23
References ... 30

2 Matrix Transformations .. 33
 2.1 Continuous Duals ... 33
 2.2 Köthe–Toeplitz Duals .. 39
 2.3 Other Duals .. 47
 2.4 Multiplier Spaces ... 48
 2.5 Matrix Classes of Some FK and BK Spaces 52
 2.6 Conservative, Regular, and Schur Matrices 57
 2.7 Matrix Transformations for Matrix Domains 64
References ... 70

3 Some New Sequence Spaces of Non-absolute Type 71
 3.1 λ–sequence Spaces ... 71
 3.2 Some Inclusion Relations 76
 3.3 Duals of the Spaces of λ–sequences 85
 3.4 Certain Matrix Mappings on λ–sequence Spaces 93
References ... 102

4 Some Non-classical Sequence Spaces 105
 4.1 Sequence Spaces of Maddox 105
 4.2 Echelon and Coechelon Spaces 111
 4.3 Matrix Transformations of Maddox Sequence Spaces 114
 4.4 Applications .. 119
 4.5 Matrix Transformations Between the Spaces Δ^{(m)}_{X} 130
4.6 Sequence Spaces of Sargent 133
4.7 Matrix Transformations on and into $m(\phi)$ and $n(\phi)$ 137
References ... 145

5 Measures of Non-compactness 147
5.1 Preliminaries ... 147
5.2 The Kuratowski Measure of Non-compactness 150
5.3 The Hausdorff Measure of Non-compactness 154
5.4 The Hausdorff Measure of Non-compactness
for Some Sequence Spaces 161
5.5 The Hausdorff Measure of Non-compactness
for Some Function Spaces 163
5.6 Inner Hausdorff Measure of Non-compactness 166
5.7 The Istraţescu Measure of Non-compactness 168
5.8 Axiomatic Approach to the Concept of a Measure
of Non-compactness 168
5.9 Measure of Non-compactness of Operators
and Condensing Operators 175
References ... 183

6 Application to Compact Matrix Operators 185
6.1 Compact Matrix Operators on Some Classical
Sequence Spaces .. 186
6.2 Compact Matrix Operators on Some BK Spaces 189
6.3 Applications to Some Matrix Domains 199
6.4 Compact Operators Between the Spaces Related to ℓ_p 209
References ... 217

7 Applications to Infinite Systems of Differential Equations 219
7.1 Ordinary Differential Equations in Banach Spaces 220
7.2 Some Special Results Concerning Differential
Equations in Banach Spaces 228
7.3 Infinite Systems of Differential Equations in the Space c_0 ... 230
7.4 Infinite Systems of Differential Equations in the Space c 234
7.5 The Case of the Sequence Spaces ℓ_1 and ℓ_p 241
7.6 Infinite Systems of Differential Equations in the Space ℓ_∞ .. 246
References ... 261

8 Applications to Integral Equations 263
8.1 The Existence and Attractivity of Solutions of a Quadratic
Volterra Integral Equation 264
8.2 An Infinite System of Integral Equations of Volterra
Type in the Space c_0 274
8.3 Solvability of a Class of Nonlinear Integral Equations of Volterra–Stieltjes Type .. 281
8.4 Solvability of an Infinite System of Nonlinear Volterra–Stieltjes Integral Equations 296
References .. 309

Appendix ... 311
Index ... 313
Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations
Banaś, J.; Mursaleen, M.
2014, XII, 315 p., Hardcover