Contents

Part I Nano-imaging by Transmission Electron Microscopy

1 Seeing Nanometer-Sized World .................................................. 3
  1.1 What is the Nanoworld? How Much is Its Size? .................. 3
  1.2 Necessity of Study for Nanoscience and Nanoimaging ....... 6
  1.3 Basic Modes for Imaging ............................................... 8
  1.4 Why are Electrons Necessary for Nanoimaging? ............... 10
  1.5 Three Methods for Seeing Isolated Single Atoms .......... 12
  1.6 Summary .......................................................... 15
Problems .............................................................................. 15
References ........................................................................... 15

2 Structure and Imaging of a Transmission Electron Microscope
(TEM) .................................................................................. 17
  2.1 Structure of a Transmission Electron Microscope .......... 17
  2.2 Basic Action of a Magnetic Round Lens ...................... 22
  2.3 Mathematics for Describing Lens Actions ................. 24
  2.4 Summary .............................................................. 27
Problems .............................................................................. 27
References ........................................................................... 28

3 Basic Theories of TEM Imaging ............................................... 29
  3.1 How to Describe a Wave in Three-Dimensional Space? ...... 29
  3.2 Why Does an Electron Microscope Visualize an Objects
        in Analogy with a Light Microscope? ......................... 33
  3.3 Why Can a Single Atom be Observed by an Electron
        Microscope? .................................................................. 35
  3.4 Images and Diffraction Patterns .................................. 38
  3.5 Summary .............................................................. 41
Problems .............................................................................. 42
References ........................................................................... 42
4 Resolution and Image Contrast of a Transmission Electron Microscope (TEM)

4.1 Simple Estimation of Point-to-Point Resolution of a TEM

4.2 Limitation by Chromatic Aberration of an Objective Lens

4.3 Effects of Other Aberrations on Image Resolution in TEM

4.4 Image Contrast of a Transmission Electron Microscope

4.5 Bright-Field Images

4.6 Dark-Field Images

4.7 Summary

Problems

References

5 What is High-Resolution Transmission Electron Microscopy?

5.1 How Can We Observe a Single Atom by TEM? – Magic of Phase Contrast

5.2 A Second-Order Theory for Single-Atom Imaging

5.3 Phase Contrast of Atomic Clusters

5.4 Imaging of Amorphous Films and Thon’s Experiment

5.5 Diffraction Contrast of Microcrystallites

5.6 Where Does an Objective Lens Focus in Thin Specimens?

5.7 Key Concepts of High-Resolution Imaging

5.8 Summary

Problems

References

6 Lattice Images and Structure Images

6.1 Interference of Two Waves in Three-Dimension

6.2 Lattice Images by Two-Wave Interference from a Crystal

6.3 Three-Wave Interference and Fourier Images

6.4 MultiWave Lattice Images

6.5 What is a Structure Image of Thicker Crystals

6.6 Other Lattice Images

6.7 Summary

Problems

References

7 Imaging Theory of High-Resolution TEM and Image Simulation

7.1 Linear Imaging Theory of TEM for Single-Crystal Specimens

7.1.1 Description of Phase Modulation by a Thin Specimen

7.1.2 Exit Wave Field for a Thicker Crystal

7.1.3 Lens Transfer Function

Problems

References
7.1.4 Phase Contrast Caused by Aberrations of an Objective Lens ............................... 90
7.1.5 Contrast Transfer Function Described in Reciprocal Space ................................. 91
7.1.6 Effects of a Slight Convergence of Incident Electron Waves and Fluctuation of Accelerating Voltage ..................................................... 93
7.1.7 Imaging Theory of Weak-Amplitude Objects ................................................. 94
7.1.8 Effects of Inelastic Scattering on HRTEM Images ........................................ 96

7.2 Image Simulation of High-Resolution TEM Images ............................................. 97
7.2.1 Necessity of the Simulation ........................................................................... 97
7.2.2 Principle and Method of Simulation ............................................................ 98
7.2.3 What is the Supercell Method in Image Simulation ....................................... 100

7.3 Coherence Problems in TEM Imaging ............................................................... 102
7.3.1 Imaging Theory of TEM and the Related Coherence of Incident Waves .......... 102
7.3.2 Contrast of Interference Fringes and the Definition of Coherence ...................... 104
7.3.3 Temporal Coherence and Spatial Coherence of Waves .................................. 105

7.4 Summary ........................................................................................................... 109

Problems .................................................................................................................. 109
References ................................................................................................................ 109

8 Advanced Transmission Electron Microscopy ...................................................... 111

8.1 Energy-Filtered Transmission Electron Microscopy (EFTEM) ......................... 111
8.1.1 Basic Theory of Electron Energy Loss Spectroscopy (EELS) ......................... 111
8.1.2 EELS in Image and Diffraction Modes ......................................................... 113
8.1.3 Practical Energy-Filtered TEM Instruments .................................................. 115
8.1.4 What is Elemental Mapping Image? .............................................................. 116
8.1.5 Spatial Resolution of Energy-Filtered TEM Images ...................................... 117

8.2 Electron Holography ................................................................. 118
8.2.1 What is Holography? ................................................................................. 118
8.2.2 Instruments for Electron Holography ......................................................... 120
8.2.3 What Can We Do Using Electron Holography? ......................................... 122

8.3 Electron Tomography – 3D Visualization of Nanoworld – ............................... 126
8.3.1 Principle of 3D Tomography ..................................................................... 126
8.3.2 Application of the Principle to TEM .......................................................... 129
### Part II Nano-imaging by Scanning Transmission Electron Microscopy

#### 9 What is Scanning Transmission Electron Microscopy (STEM)?

9.1 Characteristics of STEM .............................. 149  
9.1.1 Comparison between TEM, SEM, and STEM ..... 149  
9.1.2 Application Possibilities of STEM ............... 152  
9.2 Basics for nm-Sized Electron Probe  
(geometrical optical approach) ........................... 152  
9.3 Principle of Image Formation in STEM ............... 155  
9.4 Actual Instrument of STEM ........................... 157  
9.5 Summary ............................................... 158  
Problems ................................................ 158  
References ............................................... 158  

#### 10 Imaging of Scanning Transmission Electron Microscopy (STEM)

10.1 Reciprocal Theorem between STEM and TEM ............. 161  
10.2 Imaging Modes in STEM ............................. 163  
10.3 Summary ............................................... 165  
Problems ................................................ 166  
References ............................................... 166  

#### 11 Image Contrast and Its Formation Mechanism in STEM

11.1 Bright-Field Image Contrast and Lattice Images with Phase Contrast .............................. 168  
11.2 Crewe’s Z-Contrast of a Single Atom .................... 169  
11.3 Pennycook’s $Z^{2-x}$-Contrast in Annular Dark-Field (ADF) STEM ........................................... 171
11.4 Depth-Sectioning for ADF-STEM Images
11.5 Annular Bright-Field (ABF) STEM – Revival
  of Bright-Field Imaging in STEM –
11.6 Elemental Mapping Imaging by EELS and EDX in STEM
11.7 Secondary Electron Imaging in STEM
11.8 Scanning Confocal Electron Microscopy (SCEM)
11.9 High-Voltage STEM
11.10 Electron Tomography by STEM
  11.10.1 Image Contrast of Amorphous Specimens
  11.10.2 STEM Tomography of Crystalline Specimens
  11.10.3 3D Images Using EELS Signals and EDX Ones
  11.10.4 Topography Versus Tomography for 3D
11.11 Nanodiffraction in STEM
11.12 Summary

Problems
References

12 Imaging Theory for STEM
12.1 Basic Concept of Imaging Theory for STEM
12.2 Cowley–Moodie’s Multislice Method
12.3 Bethe’s Bloch Wave Method
12.4 Summary

Problems
References

13 Future Prospects and Possibility of TEM and STEM
13.1 Image Resolution
13.2 Effects of Chromatic Aberration
13.3 Development of Electron Energy Loss
  Spectroscopy (EELS)
13.4 Simulation for Quantitative Estimation for TEM
  and STEM Images
13.5 Development of Elemental Analysis Using EDX
13.6 Other Signal Detection for STEM Imaging
13.7 Electron Tomography in TEM and STEM
  13.7.1 Ordinary Electron Tomography
  13.7.2 HRTEM Method for the Extraction of 3D
       Information of Small Particles
  13.7.3 Depth-Sectioning Method in ADF-STEM
  13.7.4 Confocal Imaging Mode in STEM
13.8 Toward Lower Voltage TEM and STEM
13.9 In Situ Observation and High-Resolution Observation
  in Gas and Liquid Atmospheres
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.10 Pulsed Electron Beam for Time-Resolved Observation</td>
<td>209</td>
</tr>
<tr>
<td>13.11 Use of Spin-Polarized Electron Beams and Vortex Electron Beams</td>
<td>210</td>
</tr>
<tr>
<td>References</td>
<td>211</td>
</tr>
<tr>
<td>14 Concluding Remarks</td>
<td>213</td>
</tr>
<tr>
<td>References</td>
<td>215</td>
</tr>
<tr>
<td>Part III Appendix: Basics for Understanding TEM and STEM Imaging</td>
<td></td>
</tr>
<tr>
<td>15 Introduction to Fourier Transforms for TEM and STEM</td>
<td>219</td>
</tr>
<tr>
<td>15.1 Fourier Series</td>
<td>219</td>
</tr>
<tr>
<td>15.2 Fourier Integral (Fourier Transform)</td>
<td>220</td>
</tr>
<tr>
<td>15.3 Two-Dimensional and Three-Dimensional Fourier Transforms</td>
<td>221</td>
</tr>
<tr>
<td>15.4 Properties of Fourier Transforms</td>
<td>221</td>
</tr>
<tr>
<td>15.5 Fourier Transform of a Product of Two Functions</td>
<td>222</td>
</tr>
<tr>
<td>15.6 Parseval’s Relation</td>
<td>223</td>
</tr>
<tr>
<td>15.7 Relationship between Various Fourier Transforms and Phenomena in</td>
<td>224</td>
</tr>
<tr>
<td>Optics and Diffraction</td>
<td></td>
</tr>
<tr>
<td>15.8 Sign Convention for Fourier Transforms</td>
<td>226</td>
</tr>
<tr>
<td>References</td>
<td>226</td>
</tr>
<tr>
<td>16 Imaging by Using a Convex Lens as a Phase Shifter</td>
<td>227</td>
</tr>
<tr>
<td>16.1 Propagation of Electron Waves</td>
<td>227</td>
</tr>
<tr>
<td>16.2 Action of a Convex Lens</td>
<td>230</td>
</tr>
<tr>
<td>References</td>
<td>233</td>
</tr>
<tr>
<td>17 Contrast Transfer Function of a Transmission Electron Microscope</td>
<td>235</td>
</tr>
<tr>
<td>References</td>
<td>242</td>
</tr>
<tr>
<td>18 Complex-Valued Expression of Aberrations of a Round Lens</td>
<td>243</td>
</tr>
<tr>
<td>References</td>
<td>245</td>
</tr>
<tr>
<td>19 Cowley’s Theory for TEM and STEM Imaging</td>
<td>247</td>
</tr>
<tr>
<td>19.1 Transmission Electron Microscope (TEM) Images</td>
<td>247</td>
</tr>
<tr>
<td>19.2 Scanning Transmission Electron Microscope (STEM) Images</td>
<td>249</td>
</tr>
<tr>
<td>References</td>
<td>251</td>
</tr>
<tr>
<td>20 Introduction to the Imaging Theory for TEM Including Nonlinear Terms</td>
<td>253</td>
</tr>
<tr>
<td>20.1 What is Mutual Intensity?</td>
<td>253</td>
</tr>
<tr>
<td>20.2 Interaction with Specimens and Image Intensity</td>
<td>256</td>
</tr>
</tbody>
</table>
Electron Nano-Imaging
Basics of Imaging and Diffraction for TEM and STEM
Tanaka, N.
2017, XXVIII, 333 p. 129 illus., 22 illus. in color.,
Hardcover
ISBN: 978-4-431-56500-0