Contents

1 Problems Formulation ... 1
 1.1 Requirements to High-Power A.C. Motors and Generators 1
 1.2 Actual Problems of Modern Electric Machine-Building Industry; Their Solution in the Monograph 4
 1.3 Presentation Order of Monograph Contents and Structure 7
 1.3.1 Choice of Investigation Methods: Position of Monograph’s Authors 7
 1.3.2 Presentation Order of Monograph Contents 8
 1.3.3 Checking Methods Developed in the Monograph 9
 1.3.4 Symbols Accepted in the Monograph 9
 1.4 Order of References .. 10

2 Investigation Methods of Performance Characteristics for Double-Fed Machines with Converter in Rotor Circuit.
 Summary of Main Investigation Stages of A.C. Machines 13
 2.1 Peculiarities of Investigation Methods 13
 2.2 Problem Statement .. 15
 2.3 Frequencies and Amplitudes of Voltage and Current First Harmonics in Machine Rotor and Stator Windings 16
 2.3.1 Ratio of Frequencies \(f_{\text{ROT}},1 \) and \(f_{\text{ST}},1 \) at \(n_{\text{REV}} = \text{var} \) 16
 2.3.2 Ratio of Voltages \(U_{\text{ROT}},1 \) and \(U_{\text{ST},1} \) at \(n_{\text{REV}} = \text{var} \) ... 17
 2.4 Frequencies and Amplitudes of Voltage and Current Higher Time Harmonics in Machine Rotor and Stator Windings 18
 2.4.1 Ratio of Frequencies \(f_{\text{ROT}},Q \) and \(f_{\text{ST}},Q \) at \(n_{\text{REV}} = \text{var} \) 19
 2.4.2 Ratio of Voltages \(U_{\text{ROT}},Q \) and \(U_{\text{ST},Q} \) at \(n_{\text{REV}} = \text{var} \) 19
 2.5 Method for Solving Both Problems; Two Systems of Equations .. 21
2.5.1 Magnetization Characteristics Presentations

\[\theta_{0,1} = \theta(F_{M,1}) \] in Piecewise Linear Function Form. ... 21

2.5.2 Peculiarities of Solving Both Systems ... 22

2.6 Check of Methods ... 23

2.7 Excitation System Peculiarities ... 24

2.8 Summarizing the Results: Main Stages of A.C. Machine Investigations with Rotor Short Circuited Windings 24

2.8.1 Stator and Rotor Circuits Frequency Voltage, Rotational Speed of Rotor and Stator Fields in Air Gap. 24

2.8.2 Ampere’s Law Equations .. 25

2.8.3 Kirchhoff’s Second Law Equations for Stator Winding. 25

2.8.4 Kirchhoff’s Second Law Equations for Rotor Loops. System of Equations 26

Appendix 2.1 ... 26

A.2.1.1 DFM Rotor Current and MMF Under Load ... 27

A.2.1.2 Phase Angle Defining Complex Amplitudes Position of MMF \(F_{ROT,1} \) and Current \(I_{ROT,1} \) (in Stator Coordinates). ... 29

A.2.1.3 Rotor Winding Voltage, Its Components ... 29

A.2.1.4 Phase Angle Defining Complex Amplitude Position \(U_{ROT,1} \) ... 30

A.2.1.5 Rotor Winding Power Factor; Active and Reactive Winding Power; Rotor Winding Losses. .. 30

A.2.1.6 DFM Rotor Winding Design Peculiarities ... 30

Appendix 2.2 ... 31

Brief Conclusions .. 32

References .. 33

3 Stator MMF Harmonics at Non-sinusoidal Machine Power Supply (for \(M \geq 1 \), \(Q \geq 1 \)) ... 37

3.1 Initial Data and Its Representation ... 37

3.2 Stator Winding Design Peculiarities; Its Number of Phases \(m_{PH} \) ... 39

3.3 MMF Harmonics at \(m_{PH} = 3 \) .. 40

3.4 MMF Harmonics at \(m_{PH} = 6 \) ... 43

3.5 MMF Harmonic Comparison at \(m_{PH} = 3 \) and \(m_{PH} = 6 \)................. 45

3.6 EMF Frequency in Magnetically Coupled Loops \((m_{EL} \geq 1 \), \(Q \geq 1 \)) ... 47

3.6.1 Salient Pole Machines Operating in Synchronous Speed Modes 47

3.6.2 A.C. Machines in Asynchronous Modes \((\omega_{REV} \neq \omega_{p}) \) 51
3.7 MMF Harmonics of Magnetically Coupled Loops in Multiphase Stator Winding at Non-sinusoidal Power Supply and their Representation 53

3.8 Magnetically Coupled Loops in Machine Operating with Nonlinear Network Elements 54

Appendix 3.1 .. 56

Brief Conclusions ... 57

References .. 58

4 Peculiarities of Currents Investigation in Magnetically Coupled Circuits for A.C. Machines with Short-Circuited Rotor Windings .. 61

4.1 General .. 62

4.2 The Problem Determination and Algorithm of Solution 63

4.3 Method Investigating of Operation Characteristics of Powerful Squirrel Cage Motors with Nonlinear Parameters .. 68

4.4 Experimental Data and Calculating Results Comparison for the Torque M on the ShaftDepended on Slip S_SL for DAZ-Type Motor ... 72

4.5 Generalized Characteristic of Rotor Current in Cage Elements ... 73

Appendix 4.1: Screen Calculation Method of Large Low-Frequency Motor Pole Shoe ... 75

A.4.1.1 Simply Connected Domain 76

A.4.1.2 Multiply Connected Domain 84

A.4.1.3 Irregular Grid with Arbitrary Configuration Elements .. 85

A.4.1.4 The Screen Element D.C. Resistance Depends on the Temperature Distributed in It (Nonlinear Problem); the Domain Is Simply—Or Multiply Connected 85

A.4.1.5 Screen Element Reactance Accounting 86

Appendix 4.2: Determination of Average Flux Density Point Location by “Mean Value Theorem (Lagrange)” 87

Appendix 4.3: Equivalent Circuit of Powerful Induction Motors Operating in Nonlinear Networks ... 87

A.4.3.1 Basic Equations of Powerful Asynchronous Machine Substitution Patterns (Q_{TIM} \geq 1) ... 88

A.4.3.2 Machine Circuit Losses Components and Shaft Power .. 90

A.4.3.3 Additional Losses and Equivalent Circuit Impedances .. 92

Brief Conclusions ... 93

References ... 96
5 Representation of Currents in Rotor Short-Circuited Winding Elements in the Form of Generalized Characteristics 99
 5.1 Problem Statement .. 99
 5.2 Initial Data and Its Representation 101
 5.2.1 Representation of Resulting Field Harmonics
 in Air Gap .. 101
 5.2.2 Geometrical Dimensions of Winding Elements.
 Designation of Loop EMF 103
 5.2.3 A.C. Resistances and Reactances, Currents
 in Winding Elements .. 103
 5.3 System of Equations and Peculiarities of Matrix Structure
 of Its Coefficients .. 104
 5.4 Solution Results: Currents in Elements of Short-Circuited
 Rotor Windings. Their Generalized Characteristics 106
 5.5 Accounting of “Adjacent” Harmonics Fields by Means
 of Generalized Characteristics of Currents 109
 5.6 Peculiarities of Numerical Realization of System
 of Equations for Calculation of Generalized Characteristics 110
 Brief Conclusions .. 110
 References .. 112

6 Passive Quadripoles; Recurrent Circuits of Various Structure:
 Investigation of Their Peculiarities for Modeling Process
 of Currents Distribution in Short-Circuited Rotor Windings 115
 6.1 General Comments .. 115
 6.2 Representation of Short-Circuited Rotor Winding Elements
 in the Form of Quadripoles and Recurrent Circuits 116
 6.3 Passive Symmetrical and Asymmetrical Quadripoles 116
 6.4 Structural Features of Passive Symmetrical
 and Asymmetrical Recurrent Circuits 117
 6.5 Methods of Investigation of Passive Symmetrical Recurrent
 Circuits Described by “Step” or “Lattice” Functions 120
 6.5.1 Difference Equations, Methods of Their Solution ... 120
 6.5.2 Peculiarities of Currents Distribution
 in Symmetrical Passive Recurrent Circuits 124
 6.6 Open Passive Recurrent Circuits. Constants for Calculation
 of Currents Distribution Calculation Examples 125
 6.6.1 General Comments .. 125
 6.6.2 System of Equations for Constants 126
 6.6.3 Calculation Examples 127
 6.7 Investigation Methods of Passive Asymmetrical Recurrent
 Circuits ... 129
 6.7.1 Difference Equations, Methods of Their Solution ... 129
6.7.2 Constants of Asymmetrical Passive Open Recurrent Circuit; Their Determination 132
6.7.3 Calculation Examples 134
Appendix 6.1 .. 136
Brief Conclusions ... 136
References .. 138

7 Active Symmetrical and Asymmetrical Chain Circuits:
Investigation of Their Peculiarities for Modeling Process of Currents Distribution in Short-Circuited Rotor Windings 139
7.1 Main Definitions. Structural Kinds of Active U-Shaped Chain Circuits and Peculiarities of EMF Distribution of Loops ... 140
7.2 Methods of Investigation of Active Symmetrical Chain Circuits with EMFs Changing Depending on Number of Link Under the Harmonic Law ... 142
7.2.1 Difference Equations, Methods of Their Solution 142
7.2.2 Constants for Currents in Active Open Symmetrical Chain Circuits .. 144
7.2.3 Constants for Currents in Active Closed Symmetrical Chain Circuits .. 145
7.2.4 Constants for Currents in Regular Closed Chain Circuits .. 146
7.3 Methods of Currents Investigation in Asymmetrical Active Open and Closed Chain Circuits 150
7.3.1 Method of Investigation of Currents in Active Open Chain Circuits with Asymmetrical (Damaged) Elements. Calculation Example 151
7.3.2 Method of Investigation of Currents in the Active Closed Chain Circuits with Asymmetrical (Damaged) Elements: Calculation Example 154
7.3.3 Modification of the Investigation Method of Currents in the Active Closed Chain Circuits with Asymmetrical (Damaged) Elements: Calculation Examples ... 158

Appendix 7.1 .. 161
Appendix 7.2 .. 161
Brief Conclusions .. 162
References .. 163

8 EMF Induced by Resulting Field in Short-Circuited Loops of Damper Winding and Squirrel Cage 165
8.1 Initial Data and Its Representation 165
8.1.1 Representation of Resulting Field Harmonics in Air Gap 166
8.1.2 Initial Geometrical Dimensions of Damper Winding, Squirrel Cage, Pole Winding 167
8.2 Two EMF Components in Loops of Short-Circuited Rotor Winding ... 169
 8.2.1 General Problem: EMF in Any Loop of Short-Circuited Winding 169
 8.2.2 EMF of Damper Winding Loops Located on Pole ... 171
 8.2.3 EMF of Damper Winding Loops Located on Cross Axis q .. 172
 8.2.4 EMF of Loops in Squirrel Cage ... 173
 8.2.5 Excitation Winding EMF ... 175
Brief Conclusions ... 176
References .. 178

9 Investigation Methods of Currents Distribution in Regular Damper Windings and Squirrel Cages ... 179
 9.1 Compliance Between Structures of Recurrent Circuits and Constructions of Short-Circuited Rotor Windings (Damper Winding, Squirrel Cages) .. 180
 9.2 Symmetrical Squirrel Cage of Induction Machine .. 181
 9.3 Two Definitions in Investigation of Currents in Squirrel Cage Loops; Their Compliance and Areas of Correctness 183
 9.4 Damper Winding of Salient Pole Machine .. 187
 9.5 Checking Results: Transformation of Expression for Currents in Elements of Complete Damper Winding of Synchronous Machine in Expression for Currents in Squirrel Cage Elements of Induction Machine 192
 9.6 About the Determination of Damper Winding Reactances Based on Solution Obtained in This Chapter on Distribution of Currents in This Winding (Discussion Between L. A. Kilgore, Westinghouse El. Corp. and M. E. Talaat, Elliott Comp.) .. 194
Appendix 9.1: Method of Calculation of Overheats of Short-Circuited Rotor Winding Elements at Start-Up with Account for Change of the Main and Additional Losses in it from Temperature (with Account of Skin Effect) .. 197
Brief Conclusions ... 199
References .. 201

10 Investigation Methods of Currents Distribution in Squirrel Cages with Asymmetry ... 203
 10.1 General Comments ... 204
 10.2 Currents in Asymmetrical Squirrel Cages of Induction Machine Rotors 204
 10.2.1 Squirrel Cage with Asymmetrical Rotor Bar .. 205
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.2 Squirrel Cage with Two (Not Adjacent) Asymmetrical Bars in Rotor. Additional Currents in Winding Elements</td>
<td>205</td>
</tr>
<tr>
<td>10.2.3 General Problem: Squirrel Cage with Several (Not Adjacent) Asymmetrical Bars. Additional Currents in Winding Elements</td>
<td>206</td>
</tr>
<tr>
<td>10.2.4 Squirrel Cage with Three Adjacent Asymmetrical Bars (with Damages). Additional Currents in Winding Elements</td>
<td>209</td>
</tr>
<tr>
<td>10.2.5 Squirrel Cage with Three Asymmetrical Bars (with Damages): Two Bars Nearby, the Third—Next but One. Additional Currents in Winding Elements</td>
<td>209</td>
</tr>
<tr>
<td>10.2.6 Squirrel Cage with Three Asymmetrical Bars: Three Bars, not Adjacent. Additional Currents in Winding Elements</td>
<td>210</td>
</tr>
<tr>
<td>10.2.7 Calculation Example</td>
<td>211</td>
</tr>
<tr>
<td>Appendix 10.1: Additional Currents in Eq. (10.2) for Squirrel Cage with Two (Not Adjacent) Asymmetrical Bars</td>
<td>211</td>
</tr>
<tr>
<td>Appendix 10.2: Additional Currents in Eqs. (10.6) for Squirrel Cage with Three Adjacent Asymmetrical Bars</td>
<td>212</td>
</tr>
<tr>
<td>Appendix 10.3: Additional Currents in Eq. (10.7) for Squirrel Cage with Three Asymmetrical Bars: Two Bars Nearby, the Third—Next but One</td>
<td>213</td>
</tr>
<tr>
<td>Appendix 10.4: Additional Currents in Eq. (10.8) for Squirrel Cage with Three Asymmetrical Bars: Three Bars, Not Adjacent</td>
<td>213</td>
</tr>
<tr>
<td>Brief Conclusions</td>
<td>214</td>
</tr>
<tr>
<td>References</td>
<td>216</td>
</tr>
</tbody>
</table>

11 Investigation Methods of Currents Distribution in Irregular Damper Windings

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Currents in Damper Windings with Bars of Various Impedance on Each Pole</td>
<td>219</td>
</tr>
<tr>
<td>11.1.1 General Comments</td>
<td>220</td>
</tr>
<tr>
<td>11.1.2 Initial Data and Calculation Method for Currents in Winding Elements</td>
<td>220</td>
</tr>
<tr>
<td>11.2 Currents in Damper Winding with Damaged Bar on Pole</td>
<td>226</td>
</tr>
<tr>
<td>11.2.1 General Comments</td>
<td>226</td>
</tr>
<tr>
<td>11.2.2 Initial Data and Method of Calculating Currents in Winding Elements</td>
<td>227</td>
</tr>
<tr>
<td>Appendix 11.1</td>
<td>231</td>
</tr>
<tr>
<td>Appendix 11.2</td>
<td>231</td>
</tr>
<tr>
<td>Appendix 11.3</td>
<td>234</td>
</tr>
<tr>
<td>Appendix 11.4</td>
<td>234</td>
</tr>
<tr>
<td>Brief Conclusions</td>
<td>235</td>
</tr>
<tr>
<td>References</td>
<td>236</td>
</tr>
</tbody>
</table>
12 MMF of Damper Winding, Squirrel Cage (at Asymmetry in Them or at Its Absence) and Excitation Winding. Representation of MMF in the Form of Harmonic Series in Complex Plane .. 239
12.1 Fundamental Assumptions 239
12.2 Representation of Damper Winding and Squirrel Cage MMFs (at Asymmetry or Its Absence in Them) in the Form of Step Function .. 241
 12.2.1 Initial Data and Their Representation 241
 12.2.2 Peculiarities of Representing MMF and Field of Damper Winding and Squirrel Cage Currents in the Form of Step Function .. 242
12.3 General Method of Calculating MMF Harmonics and Fields of Rotor Currents; Use of Symbolical Method of Representation of Currents in Combination with Complex Form of Harmonic Series Representation (Fourier) .. 246
 12.3.1 Physical Treatment of Method. Calculation Expressions for Terms of Harmonic Series 246
 12.3.2 General Expressions for Calculation of Complex Amplitudes of MMF Harmonics in Short-Circuited Winding of Arbitrary Construction 248
12.4 MMF and Field Harmonics in Squirrel Cage with Damages for Induction Machine (General Problem) 249
 12.4.1 MMF Harmonics and Fields of Asymmetrical Squirrel Cage (with One Damaged Bar); Its Number Is N = Np .. 251
 12.4.2 MMF Harmonics and Fields of Asymmetrical Squirrel Cage (Three Adjacent Damaged Bars); Their Numbers Are: N = 0, N = 1, N = 2 252
 12.4.3 MMF Harmonics and Fields of Asymmetrical Squirrel Cage (Three Damaged Bars: Two Are Adjacent, the Third Is Next Nearest; Their Numbers Are: N = 0, N = 2, N = 3) 252
 12.4.4 MMF Harmonics and Fields of Asymmetrical Squirrel Cage (Three Damaged Non-adjacent Bars); They Numbers Are: N = 0, N = Np2, N = Np3 .. 253
12.5 Harmonics of MMF and Fields of Symmetrical Squirrel Cage (Without Damages). Checking Results 253
12.6 MMF Harmonics of Irregular Damper Windings 256
12.6.1 First Construction Version of Irregular Damper Winding: Bars with Different Impedance Are Located Only on One or on Only Several Poles 256
12.6.2 Second Construction Version of Irregular Damper Winding: Bars with Various Impedances Are Located on Each Pole; They Occupy Identical Position on Each Pole Relative to Its Longitudinal Axis .. 259
12.7 MMF Harmonics of Regular Damper Windings 262
12.8 MMF Harmonics of Excitation Winding of Salient-Pole Machine and Screen on Polar Shoe 263
12.8.1 MMF Harmonics of Excitation Winding 263
12.8.2 MMF Harmonics of Screen on Pole Shoe of Low-Speed Frequency Controlled Motor 264
Appendix 12.1: Accounting the Finite Width of Rotor Slots in the Calculation of Damper Winding MMF (Regular and Irregular) or Squirrel Cage (Symmetrical and Asymmetrical) 265
Brief Conclusions ... 266
References ... 269

13 Field Harmonics in Air Gap of A.C. Machine in Nonlinear Network .. 271
13.1 Problem Setting 272
13.2 Initial Data and Their Representation 272
13.2.1 Complex Amplitudes (Phasors) of MMF Harmonics of Machine Rotor and Stator Loops and Their Representation .. 273
13.2.2 Equivalent Gap and Its Representation 273
13.2.3 Rotor Rotation Speed and Slip SSL 274
13.3 Calculation Method of Field Harmonics Excited by Rotor and Stator Winding MMFs 274
13.3.1 Induction Machines 275
13.3.2 Complex Amplitudes (Phasors) of Field Harmonics Excited by Damper Winding MMF and Excitation Winding MMF of Salient-Pole Synchronous Machine 276
13.3.3 Rotation Speeds $\omega_{B\text{OR},R}$ in Air Gap of Field Harmonic Components Excited by Damper Winding MMF and Excitation Winding MMF of Salient-Pole Synchronous Machine 284
13.3.4 Complex Amplitudes (Phasors) of Field Harmonics Excited by Stator Winding MMF with Account of Cross Section Geometry of Salient-Pole Synchronous Machine at Rotor at Standstill ($\omega_{REV} = 0$) and at Its Rotation ($\omega_{REV} \neq 0$) .. 286

13.3.5 Rotation Speeds $\omega_{BOR, ST}$ in Air Gap of Field Harmonic Components Excited by Stator Winding MMF of Salient-Pole Synchronous Machine 288

13.3.6 Additional Ratios for Calculation of Complex Amplitudes (Phasors) of Stator Windings at $|m| = |n| = |k| = 1$, Their Check 290

Brief Conclusions .. 291

References... 293

14 System of Equations for Magnetically Coupled Loops for A.C. Machine in Nonlinear Network .. 295

14.1 Problem Setting .. 295

14.2 Selection Method of Magnetically Coupled Loops for System of Equations .. 296

14.3 Features of System of Equations for Magnetically Coupled Loops ... 297

14.4 Basic System of Equations for Magnetically Coupled Loops ... 298

14.4.1 Formulation of System; Initial Data and Results 298

14.4.2 Calculation Expressions for Flux Density Harmonics Complex Amplitudes Flux Density (Phasors) of Rotor and Stator Loops at $|m| = |n| = |k| = 1$. .. 300

14.4.3 Calculation Expressions for Complex Amplitudes of Rotor Winding Harmonics Flux Density at $|m| = |n| = |k| = 1$. .. 300

14.4.4 Calculation Expressions for Complex Amplitudes of Stator Winding Harmonics Flux Density at $|m| = |n| = |k| = 1$. .. 300

14.4.5 Result Summary: Calculation Expressions for Complex Amplitudes; Field Speeds in Air Gap. 301

14.4.6 Comparative Assessment of Separate Components of Complex Amplitudes (Phasors) 301

14.5 System of Magnetically Coupled Loops Equations. 302

14.5.1 Equations for the First System of Loops Determined by EMF Frequency $\omega_{ST} = Q_1\omega_1$. 302

14.5.2 Equations for the $\omega_{ST}^{(2)} = Q_2\omega_1$ Second System of Loops Determined by EMF Frequency 303
14.5.3 Coupling Equations Between Both Systems of Stator Loops Determined by EMF of These Loops with Frequencies ω_{ST} and $\omega_{ST}^{(2)}$ 304
14.5.4 Peculiarities of Basic System of Equations 305
Appendix 14.1: Accounting Higher Spatial Harmonics in a System of Equations of Magnetically Coupled Loops 306
Brief Conclusions ... 308
References .. 309

15 Peculiarities of Operation Modes of A.C. Machine with Short-Circuited Rotor Windings at Nonsinusoidal Power Supply ... 311
15.1 General Comments 311
15.2 Peculiarities of Squirrel Cage Operation Mode ($\omega_{REV} < \omega_{1/p}$) 312
15.3 Peculiarities of Damper Winding Operation Mode ($\omega_{REV} = \omega_{1/p}$) 313
15.4 Additional Measures to Decrease Damper Winding Losses in Salient-Pole Machine 314
Appendix 15.1 .. 314
Brief Conclusions ... 315
References .. 316

16 Operation Problems of High-Power AC Machines in Nonlinear Network ... 317
16.1 General Comments 317
16.2 Admissible Power of AC Machines in Nonlinear Network:
Determination Methods; Practical Examples 318
16.2.1 Losses in Stator Winding Carrying Alternating
Current Containing a Number of Time Harmonics ... 319
16.2.2 Losses in Machine Stator and Rotor Core Caused by Mutual Induction Field Containing a Number of Time Harmonics 322
16.2.3 Machine Admissible Total Power P_{ADM} 328
16.2.4 Calculation Examples: Determination of Machine Admissible Power P_{ADM} 328
16.2.5 Experimental Determination of Screening Factors $S_{N,DIR}$, $S_{N,ADM}$ of Asynchronous and Synchronous Salient Pole Machines 330
16.2.6 Checking of Rotor Short-Circuited Winding of Asynchronous and Synchronous Salient Pole Machines Heating Due to Higher Time Harmonics ($N > 1$): Losses for Its Calculation; Their Effect on Load of Operating Machines 335
16.3 Method of Determination Admissible Modes of High-Power Salient-Pole Generator Under Combined Load ... 337

16.4 About the Level of Electromagnetic Load of Modern Salient-Pole Generators and Their Dynamic Characteristics in Independent Mode 340

16.4.1 General Comments ... 340

16.4.2 Requirements for Dynamic Modes 340

16.4.3 Transient Deviation of Generator Voltage ΔU, Influence of Its Reactances 341

16.4.4 Inductive Resistances and Their Influence on Generator Weight and Dimensional Indicators 342

16.4.5 Problem Solutions: Offers 343

16.4.6 Additional Requirements to Generators 344

Brief Conclusions ... 344

References .. 346

17 Frequency-Controlled Induction Motors in Nonlinear Networks: Assessment Criteria of Higher Harmonics Influence—Method of Criteria Calculation 349

17.1 Higher Harmonics and Need of Their Influence Assessment on Machine Modes in Nonlinear Network 349

17.2 Frequency-Controlled Induction Machines with Short-Circuited Rotor ... 350

17.2.1 Harmonics Q_{AD} > 1 (m = 1): Slip S_{AD}, EMF and Current Frequencies F_{AD,ROT} in Rotor Loops, Power Balance in Secondary Loop 350

17.2.2 Harmonics Q_{DIR} > 1 = (m = 1): Slip S_{DIR}, Frequency of EMF and Currents in Rotor Loops, Power Balance in Secondary Loop 352

17.2.3 Technical and Economic Indicators Frequency-Controlled Induction Motors [22–26] 353

17.2.4 Calculation Peculiarities of Technical and Economic Indicators of Induction Motors in Nonlinear Network .. 356

Brief Conclusions ... 358

References .. 360

18 Method of Minimizing Losses in High-Power Low-Speed Frequency-Controlled Motors in Operation Modes at Nonlinear Dependence of Shaft Torque on Rotation Speed 363

18.1 Application Areas of High-Power Low Speed Frequency-Controlled Motors 363
18.2 Voltage, MMF and Currents in Windings in Operation Modes \((n_{REV} < n_{NOM}) \); Mutual Induction Flux in Air Gap \ldots 364
18.3 Structure of Losses in Low Speed Frequency-Controlled Motor; Efficiency in Operation Modes \((n_{REV} < n_{NOM}) \) \ldots 366
Appendix 18.1 \ldots 367
Appendix 18.2 \ldots 368
Appendix 18.3 \ldots 368
Brief Conclusions \ldots 368
References \ldots 369

19 Methods of Decreasing Nonlinear Distortion Factor in Voltage Curve of Salient-Pole Generator: Investigation of EMF Tooth Harmonics of Its Multiphase Winding with \(q \) per Pole and Phase as Integer \ldots 371
19.1 Introduction \ldots 371
19.2 Tooth Harmonics of Machine with \(q \) as Integer:
Amplitude of Their Mutual Induction Field in Air Gap in no-Load Mode; Frequency of This Field (Order of Tooth Harmonics) \ldots 373
19.2.1 Problem Formulation \ldots 373
19.2.2 Solution \ldots 374
19.2.3 Field of Harmonics \(b_{SLT}(x,t,n) \) in Stator Slot Zone. \ldots 375
19.2.4 Excitation Field \(b_{MI}(x) \) (Rotor Field); Resulting Mutual Induction Field (in Air Gap); Flux Density \(b_{Z,0}(x,t,n) \) of Tooth Order \ldots 377
19.2.5 Frequencies of Tooth Harmonics \(\omega_{Z}^{(1)} \) and \(\omega^{(2)} \);
Calculation Expression for Nonlinear Distortion Factor \ldots 378
19.3 Rotor Construction with Local Shift of Poles in Tangential Direction \ldots 379
19.3.1 Peculiarities of Practical Realization \ldots 379
19.3.2 Tooth Harmonics of EMF \(e_{Z,0}(t,n) \) in Stator Winding \ldots 380
19.3.3 Calculation Example \ldots 381
19.4 Rotor Construction with Group Shift of Poles in Tangential Direction \ldots 382
19.4.1 Peculiarities of Practical Realization \ldots 382
19.4.2 Tooth Harmonics of EMF \(e_{Z,0}(t,n) \) in Stator Winding \ldots 383
19.4.3 Calculation Example \ldots 384
19.5 Generator Construction with Stator Axial Skewing of Stator Core or Rotor Poles \ldots 384
19.5.1 Peculiarities of Practical Realization \ldots 384
20 Methods of Decreasing Nonlinear Distortion Factor in Voltage Curve of Double-Fed Machines: Investigation of EMF Tooth Harmonics of Its Multiphase Stator and Rotor Windings with q Per Pole and Phase as Integer

20.1 Introduction .. 391
20.2 Assumptions .. 392
20.3 Peculiarities of Investigating EMF Tooth Harmonics of ASG Stator and Rotor Three-Phase Windings with Integer Number Q of Slots Per Pole and Phase 393
20.4 Rotor Fields of and Their Harmonics 393
20.4.1 Excitation Winding and Field of Its “Winding” Harmonics ... 393
20.4.2 Toothed Rotor Form; Fields of Rotor Tooth Harmonics .. 394
20.4.3 Interaction of the First Harmonic of Mutual Induction Field and Field of Rotor Tooth Harmonics .. 395
20.5 The First Component of Resulting Mutual Induction Field in Air Gap of Tooth Order 395
20.5.1 Amplitudes of the First Field Component 395
20.5.2 Frequencies $\omega_{Z}(1)$, $\omega_{Z}(2)$, $\omega_{Z}(3)$ and $\omega_{Z}(4)$ of EMFs Induced in Stator Winding by the First Component of Field Harmonics ... 397
20.5.3 EMF Amplitudes $e_{1}(1)$, $e_{1}(2)$, $e_{1}(3)$ and $e_{1}(4)$ Induced in Stator Winding by the First Field Component 397
20.5.4 Nonlinear Distortion Factor $K_{\text{DIST,1}}$ of ASG Stator Winding Voltage Caused by the First Component of Mutual Induction Resulting Field in Air Gap of Tooth Order 399
20.5.5 Calculation Example 399
20.6 The Second Component of Resulting Mutual Induction Field in Air Gap of Tooth Order 400
20.6.1 Amplitudes of the Second Field Component 400
20.6.2 Frequencies $\omega_{Z}(3)$, $\omega_{Z}(2)$ of the Second Component of Stator Winding EMF Tooth Harmonics 401
20.6.3 EMF Amplitudes $e_2^{(1)}$, $e_2^{(2)}$, Induced in Stator Winding by the Second Component of Pole Harmonics .. 401

20.6.4 Nonlinear Distortion Factor $K_{DIST,2}$ of ASG Stator Winding Voltage Caused by the Second Component of Mutual Induction Resulting Field in Air Gap of Tooth Order 402

20.6.5 Calculation Example 402

20.7 The Third Component of Resulting Mutual Induction Field in Air Gap .. 403

20.7.1 Amplitudes of the Third Field Component 403

20.7.2 EMF Frequencies $\omega_{ST,W}$ in Stator Winding Induced by “Winding” Harmonics of Rotor Field 403

20.7.3 EMF Amplitudes in Stator Winding Induced by “Winding” Harmonics of Rotor Field 404

20.7.4 Nonlinear Distortion Factor $K_{DIST,3}$ of ASG Stator Winding Voltage Caused by the Third Component of Mutual Induction Resulting Field in Air Gap 404

20.7.5 Calculation Example 405

20.8 The Fourth Component of Resulting Mutual Induction Field in Air Gap of Tooth Order 405

20.8.1 Amplitudes of the Fourth Field Component; Frequency EMF .. 405

20.8.2 EMF Amplitudes Induced in Stator Winding by the Fourth Component of Field Harmonics ... 406

20.8.3 Nonlinear Distortion Factor $K_{DIST,4}$ of ASG Stator Winding Voltage Caused by the Fourth Component of Mutual Induction Resulting Field in Air Gap of Tooth Order 406

20.8.4 Calculation Example 407

Brief Conclusions .. 407

References .. 409

21 Method of Determination Stator Winding MMF at Arbitrary Phase Current Waveform and Unequal Width of Phase Zones (for Investigation of Operational Characteristics of Frequency: Controlled Motors) 411

21.1 Introduction: Problem Formulation 411

21.2 Illustration of a Method of Solution for a Particular Case 414

21.2.1 Initial Data 414

21.2.2 Solution Stages 415

21.3 Solution of General Problem 416

21.3.1 Initial Data 417
21.3.2 Step Functions of Stator Current: Representation of Each of Them in the Form of Harmonic Series $\Sigma F(\alpha, m, \Delta t_S = \text{idem})$... 418
21.3.3 Determination of Amplitude and Phase of Stator Current Step Function in the Form of Series $\Sigma F(\alpha, m, \Delta t_S = \text{idem})$ of Spatial Harmonics of Order m ... 418
21.3.4 Approximation of Stator Current Step Function Harmonics $\Sigma F(\alpha, m, \Delta t_S = \text{idem})$ by Means of Time Harmonious Series; Time Harmonics of Order $Q \geq 1$... 420
21.3.5 Result: MMF Harmonics of Stator Winding 423
21.4 Checking Results: Calculation Example 424
21.4.1 Phase Currents in Stator Winding 424
21.4.2 Three-Phase Six-Zone Single-Layer Stator Winding with Diametral Pitch and Phase Zones of Equal Width $\alpha_A = \alpha_C' = \alpha_B = \alpha_A' = \alpha_C = \alpha_{B'} = \frac{\pi}{3}$; Number $q = 1$. Position of Borders Between Phase Zones Along the Stator Periphery as Per (21.5): $\alpha_A = \frac{\pi}{3}; \alpha_C' = 2 \frac{\pi}{3}; \alpha_B = \pi; \alpha_A' = 4 \frac{\pi}{3}; \alpha_C = 5 \frac{\pi}{3}; \alpha_{B'} = 2\pi$. 425

Brief Conclusions ... 430
References... 432

22 Investigation Method of Transient Modes in Induction Machines with Rotor Cage Asymmetry ... 433
22.1 Introduction: Problem Formulation 433
22.2 Calculation of Currents Distribution in Asymmetrical Squirrel Cage Elements ... 434
22.2.1 Additional Aperiodic Current Components in Rotor Loops at Occurrence of Rotor Cage Asymmetry 434
22.2.2 Resultant Currents in Ring Portions $I_{\Xi(N)}$ and Bars $J_{\Xi(N)}$ After Breakage 436
22.3 Calculation of MMF for Asymmetrical Cage Currents 436
22.4 Calculation of Resulting Mutual Induction Fields (Fields in Air Gap) at $n = p$ 437
22.4.1 Direct Field 437
22.4.2 Additional Field 439
22.5 Determination of Mutual Induction Factors and Parameters of Secondary Loops (Rotor) for the Main and Additional Fields ... 440
22.5.1 Mutual Induction Factor M_{DIR} and Parameters of Secondary Loop (Rotor) for Direct Field 441
22.5.2 Mutual Induction Factor M_{ADD} and Parameters of Secondary Loop (Rotor) for Additional Field 441
22.5.3 Interrelation of Mutual Induction Factors and Parameters of Secondary Loops (Rotor) for Direct and Additional Fields 442

22.6 Equations for Calculation of Transients in Both Magnetically Coupled Machine Loops 443
22.6.1 Equations for Transient Currents in Stator $I_{STAT,DIR}$ and Rotor $I_{SEC,DIR}$ Caused by Direct Field 443
22.6.2 Equations for Transient Currents in Stator $I_{STAT,DIR}$ and Rotor $I_{SEC,ADD}$ Caused by Additional Field 444

22.7 The Resulting Transient Currents in Windings 446
22.7.1 Currents in Stator Winding 446
22.7.2 Currents in Secondary Loop (in Rotor) 446

22.8 Prospects for Using the Method with Account of Rotor MMF Higher Spatial Harmonics, and also for Calculations of Transient Currents in Synchronous Salient Pole Machines with Damper Winding ... 446

Brief Conclusions .. 447
References ... 450

23 Theory and Methods of Investigation of Eddy Currents and Additional Losses in Stator Windings 453
23.1 Problem Formulation .. 454
23.2 Losses and Their Distribution in Bar Stator Windings 455
23.2.1 Winding Construction Features 455
23.2.2 Sources of Bar Losses: Fundamental Assumptions While Investigating Losses 457
23.2.3 Problem Setting and Solving Methods 458
23.2.4 General Problem of Eddy Currents and Losses Calculation in Elementary Conductors of the Bar 465
23.2.5 Bars with Solid Conductors (Complete Transposition): Calculation Example 471
23.2.6 Bars with Hollow Conductors (Complete Transposition): Calculation Example 472
23.2.7 Bars with Incomplete Transposition: Calculation Example ... 475
23.2.8 Bars with Different D.C. Resistance of Elementary Conductors: Calculation Example 485

23.3 Numerical Methods of Eddy Current Investigation in Elementary Conductors of Bar Winding 495
23.3.1 General Observations .. 495
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.2</td>
<td>Problem Statement: Losses in Elements of Hollow and Solid Conductors of Slot Group</td>
<td>496</td>
</tr>
<tr>
<td>23.3.3</td>
<td>System of Equations for Currents in Elements of Slot Group Conductors. Circuits with Flux Linkage</td>
<td>498</td>
</tr>
<tr>
<td>23.4</td>
<td>Losses Distribution in Bar Winding</td>
<td>504</td>
</tr>
<tr>
<td>23.4.1</td>
<td>Additional Losses Distribution in Winding</td>
<td>504</td>
</tr>
<tr>
<td>23.4.2</td>
<td>Losses in Several Bars of Double-Layer Winding</td>
<td>507</td>
</tr>
<tr>
<td>23.4.3</td>
<td>Losses Ratio in Outer Turns in Slot</td>
<td>508</td>
</tr>
<tr>
<td>23.4.4</td>
<td>Losses, Overheating and Bar Sizing in Non-standard Design of Stator Double-Layer Winding of Large Modern A.C. Machines</td>
<td>509</td>
</tr>
<tr>
<td>23.5</td>
<td>Additional Losses in Coil Winding</td>
<td>524</td>
</tr>
<tr>
<td>23.5.1</td>
<td>Design Features</td>
<td>524</td>
</tr>
<tr>
<td>23.5.2</td>
<td>Fundamental Assumptions</td>
<td>527</td>
</tr>
<tr>
<td>23.5.3</td>
<td>Approaches to Solve the Problems of Additional Losses Caused by Slot Leakage Flux</td>
<td>527</td>
</tr>
<tr>
<td>23.5.4</td>
<td>Distribution of Circulating Currents</td>
<td>528</td>
</tr>
<tr>
<td>23.5.5</td>
<td>Losses Due to Circulating Currents and Losses Distribution in Winding Turn</td>
<td>534</td>
</tr>
<tr>
<td>23.6</td>
<td>Questions for Self-Testing</td>
<td>536</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>Method of Skin Effect Computation in Rotor Bars of Large Power Asynchronous Motor with Allowances for Temperature Distribution Therein</td>
<td>538</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Analytical Method of Designing Polyphase (m_{PH} ≥ 3) Stator Winding with an Arbitrary Fractional Number Q of Slots Per Pole and Phase</td>
<td>545</td>
</tr>
<tr>
<td>Brief Conclusions</td>
<td>548</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>549</td>
<td></td>
</tr>
</tbody>
</table>
Large A.C. Machines
Theory and Investigation Methods of Currents and Losses in Stator and Rotor Meshes Including Operation with Nonlinear Loads
Boguslawsky, I.; Korovkin, N.; Hayakawa, M.
2017, XXVII, 550 p. 34 illus., Hardcover
ISBN: 978-4-431-56473-7