Contents

1 Introduction of Rotordynamics .. 1
1.1 Vibration Problems in Rotating Machinery 1
 1.1.1 Varieties of Rotating Machinery 1
 1.1.2 Bearings .. 4
 1.1.3 Defects in Various Elements and Induced Vibration 6
 1.1.4 Rotordynamics ... 6
1.2 Types of Vibration in Rotating Machinery 8
1.3 Classification of Vibration by Mechanism of Occurrence 9
1.4 Simplifying Complicated Phenomena 11

2 Basics for a Single-Degree-of-Freedom Rotor 13
2.1 Free Vibrations .. 13
 2.1.1 Natural Frequency 13
 2.1.2 Calculation of Spring Constant 14
 2.1.3 Conservation of Energy 15
 2.1.4 Mass Effects of Spring on Natural Frequency 15
2.2 Damped Free Vibration ... 18
 2.2.1 Mass-Spring-Viscous Damped System 18
 2.2.2 Measurement of Damping Ratio 20
 2.2.3 Phase Lead/Lag Corresponding to Damping Ratio 24
2.3 Unbalance Vibration of a Rotating Shaft 25
 2.3.1 Complex Displacement and Equation of Motion 25
 2.3.2 Complex Amplitude of Unbalance Vibration 26
 2.3.3 Resonance Curves .. 27
 2.3.4 Nyquist Plot ... 28
 2.3.5 Bearing Reaction Force at Resonance 30
 2.3.6 Transmissibility of Unbalance Vibration to Foundation 32
Contents

2.4 Evaluation of \(Q \)-Value

- 2.4.1 \(Q \)-Value Criterion 34
- 2.4.2 Measurement of \(Q \)-Value by the Half Power Point Method 35
- 2.4.3 Measurement of \(Q \)-Value Using a Nyquist Plot 34
- 2.4.4 Re-evaluation of \(Q \)-Value for Rapid Acceleration 36
- 2.4.5 Vibration in Passing Through a Critical Speed 39

3 Modal Analysis of Multi-Degree-of-Freedom Systems 41

- 3.1 Equation of Motion for a Multi-dof System 41
 - 3.1.1 Multiple Mass Systems 41
 - 3.1.2 Equation of Motion for a Two-dof System 42
 - 3.1.3 Equation of Motion for a Multi-dof System 43
- 3.2 Modal Analysis (Normal Mode Method) 46
 - 3.2.1 Eigenvalue Analysis 46
 - 3.2.2 Orthogonality ... 46
 - 3.2.3 Reduced Order Modal Model 47
 - 3.2.4 Vibration Response 48
- 3.3 Modal Analysis of Beams ... 53
 - 3.3.1 Natural Frequencies and Eigenmodes 53
 - 3.3.2 Correspondence of the Modal Analyses for Multi-dof Systems and Continua 53
 - 3.3.3 Reduced Modal Models 55
 - 3.3.4 Modal Eccentricity 57
- 3.4 Physical Models from Reduced Modal Models 60
 - 3.4.1 Modal Mass ... 60
 - 3.4.2 Equivalent Mass Method 62
- 3.5 Approximation of Natural Frequencies 63
 - 3.5.1 Rayleigh’s Method .. 63
 - 3.5.2 Method Using Influence Coefficients 65
 - 3.5.3 Dunkerley’s Formula 67
 - 3.5.4 Iterative Method (Power Method) [B4] 68
 - 3.5.5 Stiffness Matrix Method 70
 - 3.5.6 Transfer Matrix Method 73

4 Mode Synthesis and Quasi-modal Method 79

- 4.1 Mode Synthesis Models .. 79
 - 4.1.1 Why Mode Synthesis? 79
 - 4.1.2 Guyan Reduction Method 80
 - 4.1.3 Mode Synthesis Models 84
- 4.2 Quasi-modal Models .. 90
 - 4.2.1 Principle of the Quasi-modal Model 90
 - 4.2.2 Examples of Quasi-modal Models 97
- 4.3 Plant Transfer Function .. 99
Chapter 5: Unbalance and Balancing

5.1 Unbalance in a Rigid Rotor

5.1.1 Static Unbalance and Dynamic Unbalance

5.1.2 Static Unbalance and Couple Unbalance

5.1.3 Adverse Effects of Unbalance Vibration

5.1.4 Residual Permissible Unbalance in a Rigid Rotor

5.2 Field Single-Plane Balancing (Modal Balancing)

5.2.1 Relationships among Rotational Pulse, Unbalance and Vibration Vector

5.2.2 Linear Relationship

5.2.3 Identifying the Influence Coefficient

5.2.4 Correction Mass

5.3 Balancing by the Influence Coefficient Method

5.4 Modal Balancing

5.5 n-Plane Balancing or (n + 2)-Plane Balancing?

5.5.1 Comparison

5.5.2 Number of Correction Planes Needed for Universal Balancing

5.5.3 What Is the “2” in the (n + 2)-Plane Method?

5.6 Balancing of a Rotor Supported by Magnetic Bearings

5.6.1 Balancing by Feed-Forward (FF) Excitation

5.6.2 Case Study: Centrifugal Compressor Supported by AMBs [VB245]

5.7 Balancing without Rotational Pulses

5.7.1 Four Run Method

5.7.2 Balancing by Placing a Trial Mass at a Regular Phase Pitch

5.8 Solution of Two-Plane Balancing

5.8.1 Principle of Calculation

5.8.2 In-Phase and Out-of-Phase Balancing

Chapter 6: Gyroscopic Effect on Rotor Vibrations

6.1 Rotodynamics

6.2 Gyroscopic Moment and the Motion of a Top

6.2.1 Gyroscopic Moment

6.2.2 Equation of Motion of a Top and Whirling Solution

6.3 Natural Vibration of a Rotor System

6.3.1 Natural Frequency of Whirling

6.3.2 Influence of the Gyroscopic Factor

6.3.3 Calculation of the Natural Frequency of Whirling in Multi-dof Rotor System
6.4 Unbalance Vibration and Resonance 163
6.4.1 Condition for Unbalance Resonance and Critical Speed 163
6.4.2 Resonance Curves for Unbalance Vibration 165
6.4.3 Calculation of Critical Speed of a Multi-dof Rotor System 167
6.5 Vibration and Resonance with Base Excitation 168
6.5.1 Resonance Conditions 168
6.5.2 Forced Vibriational Solution for Base Excitation 170
6.5.3 Resonance Curves and Whirling Trajectories 172
6.5.4 Case Study: Aseismic Evaluation of a High-Speed Rotor 173
6.6 Ball Passing Vibration and Resonance Due to Ball Bearing Defects 176
6.6.1 Ball Bearing Specifications 176
6.6.2 Excitation by a Recess on Outer Race 176
6.6.3 Excitation by a Recess on Inner Race 177
6.6.4 Resonance Conditions 178
6.6.5 Case Study: Hard Disk Drive (HDD) [VB218] 178
7 Approximate Evaluation for Eigenvalues of Rotor-Bearing Systems 181
7.1 Equation of Motion for a Single-Degree-of-Freedom Rotor System 181
7.2 Vibration Characteristics of a Symmetrically Supported Rotor System 183
7.2.1 Natural Frequencies of a Conservative System 184
7.2.2 Effects of Non-conservative System Parameters 185
7.2.3 Parameter Survey 187
7.3 Natural Frequencies of a Rotor Supported by Anisotropic Bearings 189
7.3.1 Natural Frequency of a Conservative System 189
7.3.2 Elliptical Whirling of a Conservative System 190
7.3.3 Influence of Gyroscopic Effect 192
7.3.4 Shape of Elliptical Whirling Orbit 193
7.3.5 Effects of Non-conservative Parameters 195
7.3.6 Parameter Survey 197
7.4 Vibration Characteristics of a Jeffcott Rotor 199
7.4.1 Equation of Motion 199
7.4.2 Vibration Characteristics 200
7.4.3 Real Mode Analysis 202
7.4.4 Complex Mode Analysis 204
7.5 Analysis of Characteristics of Unbalance Vibration 205
7.5.1 Equation of Motion 205

7.6 Analysis of Characteristics of Unbalance Vibration 205
7.6.1 Equation of Motion 205
7.5.2 Unbalance Vibration of an Isotropically Supported Rotor System ... 205
7.5.3 Unbalance Vibration of a Rotor Supported by Anisotropic Bearings ... 206
7.6 Case Study: Vibrations of a Flexible Rotor with Cylindrical Bearings ... 208
7.6.1 Critical Speed Map .. 208
7.6.2 Calculation of Complex Eigenvalues and Q-Values .. 209
7.6.3 Root Loci .. 210
7.6.4 Resonance Curves for Unbalance Vibration ... 211

8 Rotor System Evaluation Using Open-Loop Characteristics ... 213
8.1 Open-Loop Analysis of a Single-dof System .. 213
8.1.1 Open-Loop Frequency Response of a Single-dof System .. 213
8.1.2 Measurement of Open-Loop Frequency Response .. 221
8.2 Modal Open-Loop Frequency Response ... 222
8.2.1 Modal Model .. 222
8.2.2 Modal Open-Loop Frequency Response ... 224
8.3 Open-Loop Frequency Response of a Jeffcott Rotor ... 228
8.3.1 Series Coupling and Phase Lead Function .. 228
8.3.2 Open-Loop Frequency Response ... 229
8.3.3 Gain Cross-Over Frequency and Phase Margin ... 230
8.3.4 Precision of Approximate Solutions ... 232
8.3.5 Optimal Damping ... 234
8.3.6 Frequency Response ... 237

9 Bridge Between Inertial and Rotational Coordinate Systems .. 241
9.1 Vibration Waveforms (Displacement and Stress Caused by Strain) ... 241
9.2 Natural Frequencies ... 243
9.3 Resonance Conditions ... 245
9.4 Representation of Equation of Motion ... 246
9.4.1 Gyroscopic Moment and Coriolis Force .. 246
9.4.2 Case Study: Multi-blade Fan (Sirocco Fan) [VB55] ... 248

10 Vibration Analysis of Blade and Impeller Systems ... 253
10.1 Natural Frequencies of Rotating Structure Systems .. 253
10.1.1 Natural Frequencies of a Thin Disk ... 253
10.1.2 Natural Frequencies of Blades ... 257
10.1.3 Vibration Analysis of Cyclic Symmetry Structural Systems ... 259
10.1.4 General Vibration Analysis of Blades and Impellers in a Rotational Coordinate System 266
10.2 Vibration and Resonance of Blades and Impellers 268
 10.2.1 Conditions for Blade-Shaft Coupled Vibration 268
 10.2.2 Natural Vibration Modes of Blades and Blade Wheels ... 269
 10.2.3 External Forces Acting on Blades and Impellers 269
 10.2.4 Resonance Conditions of Blades 270
 10.2.5 Criterion of Blade Resonance: Campbell Diagram ... 273
 10.2.6 Case Study: Resonance in Impeller Blades of Centrifugal Compressor [VB958] 278
10.3 Blade/Impeller Vibrations Excited at Stationary Side 281
 10.3.1 Difference in Excitation Methods and Resonance Conditions .. 281
 10.3.2 Representation of Vibration of Blades and Impellers in an Inertial Coordinate System 281
 10.3.3 Resonance Condition 1 283
 10.3.4 Resonance Condition 2 285

11 Stability Problems in Rotor Systems 287
 11.1 Unstable Vibration Due to Internal Damping of a Rotor .. 287
 11.1.1 Equation of Motion 287
 11.1.2 Stability Condition 289
 11.1.3 Stability Analysis 290
 11.2 Unstable Vibration of an Asymmetric Rotor System 293
 11.2.1 Equation of Motion 293
 11.2.2 Overview of Vibration in an Asymmetric Rotating Shaft .. 295
 11.2.3 Simulation of Vibration of Asymmetric Rotor 303
 11.3 Vibration Due to Thermal-Bow by Contact Friction 306
 11.3.1 Thermal-Bow 306
 11.3.2 Thermal-Bow Model 307
 11.3.3 Stability Analysis 309
 11.3.4 Physical Interpretation of Stability 310
 11.3.5 Simulation of Thermal-Bow Induced Vibration 312
 11.4 Thermal-Bow Induced Vibration of an Active Magnetic Bearing Equipped Rotor 314
 11.4.1 Thermal-Bow Model 314
 11.4.2 Stability Analysis 315
 11.4.3 Physical Interpretation of Stability 317
 11.4.4 Simulation of Thermal Bow Induced Vibrations ... 318

12 Rotor Vibration Analysis Program: MyROT 321
 12.1 Data on Rotor Systems 321
 12.1.1 Rotor Drawing and Discretization 321
 12.1.2 Data Organization of a Rotor System 323
Vibrations of Rotating Machinery
Volume 1. Basic Rotordynamics: Introduction to Practical Vibration Analysis
Matsushita, O.; Tanaka, M.; Kanki, H.; Kobayashi, M.; Keogh, P.
2017, XIII, 360 p. 318 illus., 203 illus. in color., Hardcover
ISBN: 978-4-431-55455-4