1 Introduction .. 1

2 Analyses of Temporal Factors of a Source Signal 3
 2.1 Analyses of a Source Signal ... 3
 2.1.1 Autocorrelation Function (ACF) of a Sound Source ... 3
 2.1.2 Running ACF ... 4
 2.1.3 Analyses of the Running ACF 4
 2.1.4 Temporal Factors Extracted from the Running ACF 7
 2.1.5 Minimum Values of the Effective Duration Extracted from Running ACF .. 9
 2.2 Auditory Temporal Window ... 9
 2.3 Vocal Source Signal ... 10
 2.4 Running ACF of Piano Signal with Different Performance Style .. 13

3 Formulation and Simulation of the Sound Field in an Enclosure 15
 3.1 Sound Transmission from a Point Source to Ear Entrances in an Enclosure 15
 3.2 Orthogonal Factors of the Sound Field 16
 3.2.1 Temporal Factors of the Sound Field 16
 3.2.2 Spatial Factors of the Sound Field 17
 3.2.3 Auditory Time Window for the IACF Processing ... 19
 3.3 Simulation of Sound Localization ... 20
 3.4 Simulation of the Reverberant Sound Field 23

4 Model of Auditory-Brain System ... 27
 4.1 Neural Evidences in Auditory-Pathway and Brain System 27
 4.1.1 Physical System ... 27
 4.1.2 ABR from the Left and Right Auditory Pathways 27
4.2 Slow-Vertex Responses (SVR) Corresponding to Subjective Preference 30
4.3 Response on Electro-Encephalogram (EEG) and Magneto-Encephalographic (MEG) Corresponding to Subjective Preference 34
 4.3.1 EEG in Response to Change of Δt_1 34
 4.3.2 MEG in Response to Change of Δt_1 36
 4.3.3 EEG in Response to Change of T_{sub} 38
 4.3.4 EEG in Response to Change of the IACC 40
4.4 Specialization of Cerebral Hemispheres for Temporal and Spatial Factors of the Sound Field .. 41
4.5 Model of Auditory-Brain System 43

5 Temporal and Spatial Primary Percepts of the Sound and the Sound Field ... 45
5.1 Temporal Percepts in Relation to the Temporal Factors of the Sound ... 45
 5.1.1 Pitches of Complex Tones 45
 5.1.2 Frequency Limits of the ACF Model 48
 5.1.3 Loudness ofSharply Filtered Noise 49
 5.1.4 Duration Sensation ... 50
 5.1.5 Timbre of an Electric Guitar Sound with Distortion 52
 5.1.6 Concluding Remarks ... 54
5.2 Spatial Percepts in Relation to the Spatial Factors of the Sound Field ... 54
 5.2.1 Localization of a Sound Source in the Horizontal and Median Plane ... 55
 5.2.2 Apparent Source Width (ASW) 56
 5.2.3 Subjective Diffuseness .. 59

6 Theory of Subjective Preference of the Sound Field 63
6.1 Sound Fields with a Single Reflection and Multiple Reflections ... 63
 6.1.1 Preferred Delay Time of a Single Reflection 63
 6.1.2 Preferred Horizontal Direction of a Single Reflection to a Listener ... 66
6.2 Sound Fields with Early Reflections and the Subsequent Reverberation ... 66
6.3 Optimal Conditions Maximizing Subjective Preference 67
 6.3.1 Listening Level (LL) .. 68
 6.3.2 Early Reflections After the Direct Sound (Δt_1) 69
6.3.3 Subsequent Reverberation Time After the Early Reflections (T_{sub}) 70
6.3.4 Magnitude of the Interaural Cross-Correlation Function (IACC). 70
6.4 Theory of Subjective Preference for the Sound Field 71

7 Examination of Subjective Preference Theory in an Existing Opera House 75
7.1 Measurement of Orthogonal Factors of the Sound Field at Each Seat 75
7.1.1 Procedure. ... 75
7.1.2 Measurement Results. 76
7.2 Subjective Preference Judgments. 77
7.2.1 Procedure. ... 78
7.2.2 Subjects. ... 79
7.2.3 Results of the Paired-Comparison Tests (PCT) 80
7.3 Multiple Dimensional Analyses. 80
7.3.1 Correlation Matrix of Physical Factors. 80
7.3.2 Results and Discussion 81

8 Reverberance of the Sound Field 85
8.1 Reverberance in Relation to Four Orthogonal Factors 85
8.1.1 Scale Value of Reverberance in Relation to Δt_1 and T_{sub} 85
8.1.2 Scale Value of Reverberance in Relation to SPL and IACC 88
8.2 Examination on Reverberance in an Existing Hall 91

9 Improvements in Subjective Preferences for Listeners and Performers .. 97
9.1 Effects of Stage Building of Ancient Theaters 97
9.1.1 Binaural Impulse Responses 97
9.1.2 Reverberation 98
9.1.3 IACC ... 100
9.2 Balance of a Vocal Source on the Stage and Music in the Pit of Opera Houses 101
9.2.1 Balance of Listening Level 101
9.2.2 Balance of EDT, Δt_1, and IACC 101
9.3 Results .. 103
9.4 Conclusions ... 106
9.5 Singing Styles on the Stage Blending with the Sound Field for Listeners 106
9.6 Preferred Delay Time of a Single Reflection, Δt_1 for Cellists .. 112
Opera House Acoustics Based on Subjective Preference Theory
Ando, Y.
2015, XIV, 179 p. 130 illus., 8 illus. in color., Hardcover
ISBN: 978-4-431-55422-6