Chapter 2
Nanoporous Copper Metal Catalyst in Click Chemistry: Nanoporosity Dependent Activity Without Supports and Bases

Abstract Nanoporous copper catalysts with tunable nanoporosity were fabricated from Cu_{30}Mn_{70} alloy by controlling the dealloying temperature under free corrosion conditions. The tunable nanoporosity of CuNPore led to a significant enhancement of catalytic activity in click chemistry without using any supports and bases. Characterization of CuNPore surface, high reusability, leaching experiment, and formation of nanostructured copper acetylide revealed that the click reaction occurred at the catalyst surface and the Cu(I) species was the real catalytic active sites. The CuNPore catalyst system was also applied to the three-component coupling of terminal alkynes, tosyl azide and dialkylamines to afford the corresponding aminoimines in high yields.

Keywords Click chemistry · Nanoporous copper catalyst · Heterogeneous catalysis · High reusability

2.1 Introduction

Nanoporous metals are promising materials for catalysis [1–9], sensing [10–12], and actuation [13, 14] applications due to their interesting structural, optical and surface properties. In spite of the growing number of studies on various applications of nanoporous metals, the catalytic properties in chemical reactions are still less explored, although the interesting features of nanoporous metals make them potentially attractive candidates for new heterogeneous catalysts [1–9]; the three-dimensional open-pore network structures and metal ligaments allow the transport of molecules and ions, a high surface-to-volume ratio in comparison with bulk metals results in outstanding catalytic efficiency; furthermore, the potentially high reusability and rather simple work-up are favorable for practical synthetic methodology. Moreover, in contrast to the supported nanoparticles (NPs) catalyst, a nanoporous metal without supports should be a challenging catalyst system to understand the relevant catalytic mechanism more easily and to extend the catalytic application widely by elimination of the support effect problems and
relaxation of aggregation. In this regard, we have focused on the study of the catalytic properties of unsupported nanoporous metals in organic molecular transformations under liquid phase conditions [15, 16]. Nanoporous gold exhibited a remarkable catalytic efficiency and reusability in the oxidation of organosilanes into silanols with water [15], and non-porous palladium without ligands and supports showed high catalytic activity and reusability in the Suzuki coupling [16]. Therefore, the design and synthesis of new and efficient nanoporous metal catalytic systems for development of molecular transformations are highly desirable.

In 2002, Sharpless [17] and Meldal [18] reported independently the Huisgen [3 + 2] cycloaddition of terminal alkynes and organic azides catalyzed by homogeneous Cu(I) salts, the so-called click reaction. This methodology has been emerged as the most powerful tool for connecting the two useful functional groups. During the last few years, numerous applications of the click reaction have been reported in the field of material sciences, bio- and medicinal chemistry [19–21]. The click reaction can be catalyzed also by heterogeneous copper(I), such as immobilized copper nanoclusters and copper/cuprous oxide NPs, copper-in-charcoal NPs, copper zeolites, and copper nitride NPs supported on mesoporous SiO$_2$ with or without bases [22–30]. Copper metal alone has also been reported to catalyze this click reaction, while the reaction is relatively slow and requires high catalyst loading [31]. Recyclability of these heterogeneous copper catalysts was rarely reported [30]. Recently, it has been reported that the monolithic CuNPore is a promising high strength/low density material, which can be synthesized through the chemical or electrochemical de-alloying of various single-phase Cu/M (M = Al, Mg, Mn) alloys [32–36]. Herein, we report an efficient approach for the synthesis of CuNPore with tunable nanoporosity and its remarkable catalytic properties in click chemistry without using any supports and bases (Eq. 2.1). To the best of our knowledge, this is the first report on a monolithic CuNPore-catalyzed molecular transformation, while the non-monolithic CuNPore in the form of Raney copper is a well known catalyst in the water-gas shift reaction [37, 38].

\[
\begin{align*}
R^1\equiv & + R^2-\text{N}_3 \\
\text{cat. CuNPore} & \rightarrow R^1\equiv N=N\cap R^2 \\
toluene or neat & \text{at } 65^\circ C \\
\end{align*}
\]

(2.1)

2.2 Results and Discussion

2.2.1 Synthesis of Nanoporous Copper

Nanoporous metals with ideal bicontinuous structures can be synthesized by chemical or electrochemical dealloying of binary or ternary alloys by selective dissolution of one or more of the components of the alloy. To obtain uniform
nanoporosity upon dealloying, an alloy system is usually required to be in monolithic phase because the nanoporosity is formed by a self-assembly process through surface diffusion, not by the simple excavation of one phase from a preseparated multiphase system. Surface diffusion of the less reactive component across the alloy/solution interface plays a key role in the formation of nanoporous metals and has a significant influence on size of ligament/pore. Furthermore, the electrochemical activities of elements in an alloy may be significantly different from the environment, which can strongly affect dissolution process and dealloying morphology; this relationship indicates that the compositions of starting alloys also have a significant influence on the nanostructure of porous metals.

CuNPore is a promising, high strength/low density material, because of its high porosity and yield strength of 86 ± 10 MPa. Recently, it has been reported that monolithic CuNPores can be synthesized through the chemical or electrochemical dealloying of various Cu/M (M = Al, Mg, Mn, etc.) alloys [32–36]. Hayes et al. [32] and Chen et al. [36] reported the synthesis of monolithic CuNPores by chemical/electrochemical dealloying of a single-phase Cu$_{30}$Mn$_{70}$ alloy under acidic conditions with ligaments of length 10–125 nm. Zhang et al. have also synthesized monolithic CuNPores with a ligament length of several hundred nanometers from dual-phase Cu/Al and Cu/Mg alloys by chemical dealloying in HCl solution [33, 34]. Most recently, Liu et al. succeeded in synthesis of CuNPores with ligament lengths from 20–200 nm through chemical dealloying in an alkaline solution by altering the Cu/Al ratio of the initial alloys [45, 46]. In view of the industrial applications of these products, widespread use of the dealloying technique to make CuNPores is frequently hindered by the high cost of such unreactive metals and by the limited range of alloy systems. To date, little attention has been paid to the synthesis of CuNPores with tunable nanoporosity by means of changing the dealloying conditions; although it has been proved that materials with smaller nanostructure will offer higher surface area, which may significantly enhance catalytic properties. The Cu alloy that best fits these requirements is Cu$_{30}$Mn$_{70}$. Recently, Chen et al. obtained CuNPores with tunable nanopore sizes from Cu/Mn ribbons by controlling chemical dealloying time in a diluted HCl solution [36]. However, the small dimensions (thickness ≈ 20 μm; width ≈ 1 mm) of the ribbon used would cause it to be brittle during the catalytic transformations. Investigation of the synthesis of CuNPore catalysts with suitable dimensions and smaller pore/ligament size is highly desirable.

The alloy Cu$_{30}$Mn$_{70}$ was synthesized from pure Cu (99.99 wt%) and Mn (99.99 wt%) at 1300 °C in a high-frequency induction furnace. The Cu/Mn alloy, sealed in quartz tube under vacuum, was heated at 900 °C for 72 h and then

Scheme 2.1 Synthesis of Cu$_{30}$Mn$_{70}$ alloy and CuNPore by chemical dealloying
quenched into water (Scheme 2.1). The resulting alloy was sectioned using a diamond saw into samples approximately 1 mm in thickness. The samples were rolled into films of thicknesses of about 200, 250, and 300 μm for dealloying.

Various CuNPores with versatile ligament scales and morphologies were synthesized by chemical dealloying with two kinds of electrolytes following Hayes’ method \[32\] \(5 \times 5\) mm pieces of the three thickness of rolled \(\text{Cu}_{30}\text{Mn}_{70}\) were placed directly in pre-prepared electrolyte \(1\ M (\text{NH}_4)_2\text{SO}_4\) and \(0.01\ M\text{MnSO}_4\) at room temperature for 6 days. SEM imaging (Fig. 2.1) showed that ligament and nanopore channels were formed uniformly. The average ligament diameters were estimated as \(\approx 40\) nm for the 200 μm thickness alloy (cat-1), \(\approx 35\) nm for both the 250 and 300 μm thickness alloys (cat-2 and cat-3). EDX analysis showed that the residual Mn composition of CuNPores remains approximately constant at 1–2 at. %. In the same electrolytes, the rolled \(\text{Cu}_{30}\text{Mn}_{70}\) alloy with a thickness of \(\approx 200\) μm was treated at different temperatures, producing CuNPores with a tunable diameter; \(\approx 25\) nm at 0 °C (cat-4), \(\approx 30\) nm at 10 °C (cat-5), \(\approx 50\) nm at 40 °C (cat-6), \(\approx 70\) nm at 60 °C (cat-7) (Fig. 2.2). EDX analysis showed that the residual Mn composition of the 0 °C dealloyed sample (cat-4) is \(\approx 4\) at. %, and
2.2 Results and Discussion

Fig. 2.3 SEM images of CuNPore fabricated by dealloying of Cu$_{30}$Mn$_{70}$ (200 μm thickness) in HCl solution with pH a 1.3 (cat-8), b 1.5 (cat-9), c 1.7 (cat-10)

Fig. 2.4 EDX spectra of a cat-4 made at 0 °C, Cu$_{30}$Mn$_{70}$, b cat-5 made at 10 °C, Cu$_{98}$Mn$_{2}$, c cat-1 made at 25 °C, Cu$_{98}$Mn$_{2}$, d cat-6 made at 40 °C, Cu$_{98}$Mn$_{2}$, e cat-7 made at 60 °C, Cu$_{98}$Mn$_{2}$
remains approximately constant at \(\approx 2 \) at. % for cat-5 to cat-7 (Fig. 2.4). Dealloying of the 200 \(\mu m \) thickness Cu\(_{30}\)Mn\(_{70}\) alloy in HCl solution resulted in large ligaments with an average diameter of 60–70 nm (Fig. 2.3a, b, cat-8 and cat-9); in the reduced concentration, a non-nanopore structure was observed (Fig. 2.3c, cat-10). These results indicate that the dealloying conditions and the nature of initial alloys significantly influence the nanopore/ligament size and morphology in dealloyed CuNPores.

2.2.2 The Influence of CuNPore Structures on Catalytic Activity in the 1,3-dipolar Cycloaddition of Terminal Alkynes and Organic Azides

Various CuNPore materials were used as catalysts in the CuAAC reaction of phenylacetylene and benzyl azide in toluene at 65 °C for 2 h and the influence on catalytic activity of their ligament sizes and morphology was examined (Table 2.1). CuNPore catalysts synthesized from alloys of different thickness were also tested; cat-1 showed the highest activity (entries 1–3). Of the CuNPore

<table>
<thead>
<tr>
<th>Entry</th>
<th>CuNPore catalyst</th>
<th>Ligament size, nm</th>
<th>Alloy thickness, (\mu m)</th>
<th>Electrolyte(^a)</th>
<th>Yield 3a, (^b) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cat-1</td>
<td>40</td>
<td>200</td>
<td>A (25 °C)</td>
<td>99(^c)</td>
</tr>
<tr>
<td>2</td>
<td>cat-2</td>
<td>35</td>
<td>250</td>
<td>A</td>
<td>83</td>
</tr>
<tr>
<td>3</td>
<td>cat-3</td>
<td>35</td>
<td>300</td>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>cat-4</td>
<td>25</td>
<td>200</td>
<td>A (0 °C)</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>cat-5</td>
<td>35</td>
<td>200</td>
<td>A (10 °C)</td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>cat-6</td>
<td>50</td>
<td>200</td>
<td>A (40 °C)</td>
<td>69</td>
</tr>
<tr>
<td>7</td>
<td>cat-7</td>
<td>70</td>
<td>200</td>
<td>A (60 °C)</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>cat-8</td>
<td>60</td>
<td>200</td>
<td>B (Ph 1.3)</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>cat-9</td>
<td>70</td>
<td>200</td>
<td>B (pH 1.5)</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>cat-10</td>
<td>–</td>
<td>200</td>
<td>B (pH 1.7)</td>
<td>69</td>
</tr>
<tr>
<td>11</td>
<td>Cu({30})Mn({70})</td>
<td>–</td>
<td>200</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Cu(_2)O</td>
<td>–</td>
<td>–</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>CuO</td>
<td>–</td>
<td>–</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

The reaction of phenylacetylene and benzyl azide was carried out in the presence of 2 mol% of Cu catalyst in toluene at 65 °C, for 2 h

\(^a\) A: 1 M (NH\(_4\))\(_2\)SO\(_4\) and 0.01 M MnSO\(_4\); B: HCl solution

\(^b\) \(^1\)H NMR yield determined using CH\(_2\)Br\(_2\) as an internal standard

\(^c\) Isolated yield
catalysts with controlled ligament sizes, cat-1, with a ligament size of about 40 nm, showed the greatest activity, affording the corresponding 1,2,3-triazoles in almost quantitative yield (entry 1 vs. entries 4–7). It is well known that nanocatalysts of smaller sizes exhibit greater catalytic activity as a result of their high surface areas; however, these results were unprecedented. The specific surface area of cat-3 was measured by the BET method to be 14 m2/g, the turnover frequency (TOF) thus reached to 0.26 s$^{-1}$. It should be noticed that the reaction can be catalyzed by cat-3 at ambient temperature, although it required a longer reaction time (30 h). Cu-Mn alloy was totally inactive as a catalyst (entry 11). These results indicate that the tunable nanoporosity of CuNPore has a strong influence on catalytic activity in the click reaction, however the reason for this remains unresolved. Further examination of the dealloyed Cu catalysts synthesized in HCl solution (cat-8–10), revealed them to be less active (entries 8–10).

The catalytic activity of CuNPore (cat-1, 2 mol%) was further examined with various terminal alkynes and organic azides in toluene (2 M) at 65 °C (Table 2.2). Not only aromatic and heteroaromatic alkynes but also alkylalkynes were catalyzed regioselectively, affording 1,2,3-triazoles in excellent yields (entries 1–7). Various functional groups, such as alkene, ester, and protected amines were tolerated under the present heterogeneous conditions (entries 8–11). Under neat conditions, the catalytic loading can be decreased to 0.1 mol% without any significant influence on the reaction efficiency, and the TOF was increased up to 5.2 s$^{-1}$ (Eq. 2.2).

<table>
<thead>
<tr>
<th>Entry</th>
<th>R1</th>
<th>R2</th>
<th>Time, h</th>
<th>Yield, (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-pyridyl</td>
<td>Bn 2a</td>
<td>4.5</td>
<td>3b, 96</td>
</tr>
<tr>
<td>2</td>
<td>3-thienyl 1c</td>
<td>Bn 2a</td>
<td>7</td>
<td>3c, 99</td>
</tr>
<tr>
<td>3</td>
<td>n-pentyl 1d</td>
<td>Bn 2a</td>
<td>6</td>
<td>3d, 99</td>
</tr>
<tr>
<td>4</td>
<td>c-hexyl 1e</td>
<td>Bn 2a</td>
<td>4</td>
<td>3e, 97</td>
</tr>
<tr>
<td>5</td>
<td>t-Bu 1f</td>
<td>Bn 2a</td>
<td>22</td>
<td>3f, 99</td>
</tr>
<tr>
<td>6</td>
<td>HOCH$_2$ 1g</td>
<td>Bn 2a</td>
<td>19</td>
<td>3g, 94</td>
</tr>
<tr>
<td>7</td>
<td>Ph 1a</td>
<td>Ph 2b</td>
<td>22</td>
<td>3h, 95</td>
</tr>
<tr>
<td>8</td>
<td>Ph 1a</td>
<td>Cinnamyl 2c</td>
<td>19</td>
<td>3i, 99</td>
</tr>
<tr>
<td>9</td>
<td>Ph 1a</td>
<td>EtO$_2$CCH$_2$ 2d</td>
<td>3</td>
<td>3j, 99</td>
</tr>
<tr>
<td>10</td>
<td>BnNHCH$_2$ 1h</td>
<td>Ph 2b</td>
<td>3.5</td>
<td>3k, 95</td>
</tr>
<tr>
<td>11</td>
<td>TsNHCH$_2$ 1i</td>
<td>Ph 2b</td>
<td>6</td>
<td>3l, 98</td>
</tr>
</tbody>
</table>

Table 2.2 CuNPore (cat-1)-catalyzed synthesis of various substituted triazoles

To a toluene (2 M) solution of cat-1 (2 mol%) was added alkyne 1 and azide 2 (1 equiv.). The mixture was stirred at 65 °C for the time shown in the table.

a Isolated yield
b 2 equiv. azide were used
c 1.2 equiv. azide were used
The CuNPore (cat-1) catalyst was reused for multiple cycles without significant loss of catalytic activity in the reaction of 1a with 2a; the yield was still 98% in the tenth cycle (Fig. 2.5). After simple filtration of the reaction mixture, the catalyst was washed with acetone and reused without further purification. The product was produced almost quantitatively in every cycle and the turnover number (TON) reached up to 8200. It is noteworthy that the nanostructure of the recovered catalyst did not show significant changes after the fifth cycle, however, the nanostructure on surface was not clear after the tenth cycle while the cross-sectional nanostructure survived well (Fig. 2.6).

The CuNPore catalyst system can be further applied to the three-component coupling of terminal alkynes, tosyl azide and dialkylamines to afford the corresponding aminoimines in high yields; this was previously reported for homogeneous Cu catalysts (Scheme 2.2) [47]. The reactions tolerated different functional groups and the catalyst could be reused at least once without loss of catalytic activity. In addition, the three-component coupling gave an excellent yield, whereas the reaction over the reported homogeneous Cu catalyst afforded a mixture of products. This result implies that CuNPore catalysts can be applied to a range of other transformations with high activity and selectivity.
2.2.3 Mechanistic Investigation

A number of homogeneous and heterogeneous examples proved that the click reaction was catalyzed by Cu(I) species [17–30]. X-ray photoelectron spectroscopy (XPS) spectra showed that the fresh CuNPore (cat-1) surface is composed of Cu(0), Cu(I), and Cu(II) species, while Cu(I) is a predominant component (Fig. 2.7) [41]. The Cu 2p peaks at 932 and 953 eV and Cu LMM Auger peak at 568 eV were assigned to Cu(0); peaks at 570, 932, and 953 eV were ascribed to Cu(I); several satellite peaks at 935 eV, 944 eV, 955 eV, and 963 eV correspond to Cu(II). The Cu(I) and Cu(II) ions exist as the native Cu$_2$O and CuO on CuNPore surface. The XPS spectra of cat-1, cat-4 to cat-7 having different ligament sizes did not show a significant difference on the surface component (Fig. 2.8). Moreover, after reaction, the satellite peaks of Cu(II) were almost disappeared while Cu(I)

Scheme 2.2 Application of a CuNPore catalyst to the three-component coupling of terminal alkynes, tosyl azide, and dialkylamines

\[
R_1\text{--} + \text{TsN}_3 + R_2^2\text{NH} \xrightarrow{\text{cat-1 (10 mol\%)} \text{THF, 65 °C, 3 h}} R_1^1\text{--} + \text{NTs} + R_2^2\text{NH} \\
R_1^1 = \text{Ph, } R_2^2 = \text{i-Pr} \\
R_1^1 = \text{o-hexyl, } R_2^2 = \text{Pr} \\
R_1^1 = \text{Ph, } R_2^2 = \text{allyl} \\
\]

1st: 78%; 2nd: 83%
remained predominantly (Fig. 2.7). This result suggested that some amounts of Cu metal might be leached to the organic solvent. Indeed, the inductively coupled plasma (ICP-AES) analysis showed that only 0.2 ppm of Cu was leached after reaction. To clarify whether the leached Cu metal catalyzes the present reaction or not, we monitored the reaction with or without catalyst. The reaction of 1a and 2a was carried out by using 5 mol% of cat-1 in toluene (0.5 M) at 65 °C. After 3 h, CuNPore catalyst was removed from the reaction vessel and 3a was produced in
38 % 1H NMR yield at this time (Fig. 2.9a, ■ symbols). The reaction mixture was continuously heated in the absence of the catalyst for 1 h, affording 3a in 40 % yield, while the reaction was completely stopped in the next 1 h. The reaction restarted when cat-1 was put back into the mixture and finally gave 3a in 99 % yield within 4 h. On the other hand, the control reaction without removal of catalyst was complete in 6 h, giving 3a in 98 % yield (Fig. 2.9a, ● symbols). These results indicated that the leached copper was mainly Cu(II) species which was unable to catalyze the present click reaction, suggesting that the reaction is catalyzed by Cu(I) ions on the CuNPore surface. It should be noted that Cu$_2$O or CuO powder cannot catalyze this reaction without a base (Table 2.1, entries 12 and 13). These results further support that the nanoporous structure plays a crucial
role in the current catalysis. In contrast, when THF was used as solvent instead of toluene in the same control reaction, the reaction slowed down after removal the catalyst, but did not stop, implying that leached CuI species are stabilized by THF preventing easy oxidization to CuII (Fig. 2.9b). ICP analysis showed that only a negligible amounts of Cu were leached in the reaction in toluene and THF, 0.2 and 0.11 ppm, respectively.

Involvement of copper(I) acetylide species in the click reaction is well demonstrated by computational study and kinetic experiments [42–44]. During this study of the catalytic properties of CuNPore materials, we found that when cat-1 was treated with an excess amount of phenylacetylene in toluene without organic azides at room temperature, the CuNPore catalyst surface was turned to yellow after washing with acetone and dichloromethane. The SEM image showed that cat-1 surface was covered with a uniform grass-like material (Fig. 2.10). A binding energy peak appeared in between those of CuO and Cu2O, and peaks of Cu(II) and Cu(0) were not detected in the XPS spectra, suggesting that the new peaks (marked by *) of the grass-like material surface should be assigned to Cu(I) species (Fig. 2.11). However, treatment of cat-1 with benzyl azide without phenylacetylene did not change the nanoporous structure of the catalyst. These results prompted us to examine the possibility of the nanostructured copper acetylide formation. When the grass-like material (Fig. 2.10) was treated with benzyl azide at 65 °C for 2 h, the grass-like material disappeared from the surface, and the nanoporous structure of cat-1 was recovered, and a very small amount of the corresponding triazole 3a was detected by 1H NMR and GC-MS. Moreover, the recovered CuNPore remained its high catalytic activity in the reaction of 1a and 2a (99 % of 3a), although the reaction with the grass-like material as a catalyst gave 58 % of 3a. These results implied that the grass-like material should be the nanostructured polymeric copper acetylide which was less active than the copper acetylides with lower order aggregates generated in situ. The results were in good agreement with the previous DFT studies and experimental investigation reported by Fokin [42, 43] and Straub [44]. It is noteworthy that the nanostructured copper acetylide was very stable in air compared to the air-sensitive fresh CuNPore, suggesting that the polymeric copper acetylide can be used as a CuNPore metal storage to protect the nanoporosity of CuNPore from air.

2.3 Conclusion

we have developed an efficient approach for the fabrication of nanoporous copper materials with tunable nanoporosity, and demonstrated that CuNPore has an outstanding catalytic activity for the click chemistry without using any supports and bases. The catalytic activity was highly in dependence on the ligament (or pore) sizes of the CuNPore materials; ligament size about ~40 nm significantly enhanced the catalytic efficiency. Characterization of the catalyst surface, leaching experiments, and the formation of nanostructured copper acetylide revealed that
2.3 Conclusion

the present click reaction is catalyzed by Cu(I) species on the CuNPore surface. The CuNPore catalyst exhibited a high reusability; it can be recycled for ten times without significant loss of activity. A wide range of alkynes and azides can be tolerated, giving the corresponding triazoles in excellent yields. The CuNPore catalyst system can also be applied to the three-component coupling of terminal alkynes, tosyl azide and dialkylamines to afford the corresponding aminooimines in high yields. Further studies on exploring new catalytic activities of CuNPore materials and extension of its utility to organic synthesis are in progress.

2.4 Experimental Section

2.4.1 General Information

1H NMR and 13C NMR spectra were recorded on JEOL JMTC-270/54/SS (JAS-TEC, 300, 400, 500 MHz) spectrometers. 1H NMR spectra are reported as follows: chemical shift in ppm (δ) relative to the chemical shift of CDCl$_3$ at 7.26 ppm, integration, multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and br = broadened), and coupling constants (Hz). 13C NMR spectra reported in ppm (δ) relative to the central line of triplet for CDCl$_3$ at 77 ppm. IR spectra were recorded on JASCO FT/IR-4100 spectrometer; absorptions are reported in cm$^{-1}$. High-resolution mass spectra were obtained on a BRUKER APEXIII spectrometer. The XPS measurements were carried out using a VG ESCALAB 250 spectrometer (Thermo Fisher Scientific K.K.) employing monochromatic Al K X-ray radiation. The system was operated at 15 kV and 200 W. The base pressure of the analysis chamber was less than 10 to 8 Pa. SEM observation was carried out using HITACHI FE-SEM S4300 operated at an accelerating voltage of 10 kV. EDX analysis was carried out using EDAX Genesis with HITACHI FE-SEM S4300 operated at an accelerating voltage of 20 kV. ICP-MS analysis was performed with Shimadzu ICPS-7510. Column chromatography was carried out employing Slica gel 60 N (spherical, neutral, 40 ~ 100 µm, KANTO Chemical Co.). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm precoated plate Kieselgel 60 F$_{254}$ (Merk).

2.4.2 Materials

Anhydrous toluene (WAKO), Cu (99.99 %, MITSUWA), Mn (99.99 %, MITSUWA), alkynes (1) and azides (2) were purchased and used as received. The structure of products were identified according to the reported literatures [48–52].
2.4.3 Calculation of TOF and TON

The surface area of CuNPore (cat-1, ligament size: \(\sim 40 \) nm) dealloying at room temperature was measured by BET method to be 14 m\(^2\)/g, and the density of surface atoms for the energetically most stable Cu(111) surface is \(1.77 \times 10^{19} \) atoms/m\(^2\). The reaction time was 2 h as shown in Table 2.1. Using these values the TOF was calculated to be 936 h\(^{-1}\) (Table 2.1, entry 1). On the other hand, TON was calculated to be 8200 by the number of the Cu atoms on the catalyst surface with the number of the product 3a as shown in Fig. 2.5 [6].

2.4.4 Fabrication of Cu\(_{30}\)Mn\(_{70}\) Alloy

Cu\(_{30}\)Mn\(_{70}\) alloys was fabricated from pure Cu (99.99 wt%) and Mn (99.99 wt%) at 1300 °C by high-frequency induction furnace. The Cu–Mn alloy sealed in quartz tube under vacuum was heated at 900 °C for 72 h, and quenched into water [32]. The resulting alloy was sectioned, using a diamond saw, into samples approximately 1 mm thick. The alloy samples were rolled to about 200 \(\mu \)m thickness.

2.4.5 Representative Fabrication Method of Nanoporous Copper (CuNPore, cat-1) Under Free Corrosion

The rolled alloy sample with 200 \(\mu \)m thickness and 5×5 mm size was placed directly in 1 M (NH\(_4\))\(_2\)SO\(_4\) and 0.01 M MnSO\(_4\) electrolytes at room temperature (25 °C) for 6 days [32]. All electrolytes were prepared with deionized (DI) water and reagent grade chemicals. After dealloying, the sample was removed from electrolytes and rinsed in DI water for few minutes. The sample was then washed with acetone and dried on vacuum. The dried CuNPore was stored in glove box (Fig. 2.12).

Under same electrolytes, cat-4 and cat-5 were fabricated at 0 and 10 °C for 6 days, respectively. Cat-6 and cat-7 were dealloyed at 40 and 60 °C for 4 days. Cat-2 and cat-3 were fabricated at 25 °C for 6 days.

Under HCl solution, cat-8, cat-9 and cat-10 were fabricated at 25 °C for 6 days.

2.4.6 Representative Procedure for the CuNPore (cat-1)-Catalyzed Click Reaction of Phenyl Acetylene (1a) and Benzyl Azide (2a) (Tables 2.1 and 2.2)

To a toluene (2 M, 0.5 mL) solution of CuNPore (cat-1, 2 mol%, 1.3 mg) was added phenyl acetylene 1a (1 mmol, 112 \(\mu \)L) and benzyl azide 2a (1 mmol, 125 \(\mu \)L) in a V-shape reactor vial. The reaction mixture was stirred at 65 °C for 2 h by using a bulky round-shape magnetic stirring bar. After consumption of 1a and 2a
which were monitored by TLC, the reaction mixture was cooled to room temperature. The mixture was filtered and washed with dichloromethane. The recovered CuNPore catalyst was washed with acetone and dried under vacuum. After concentration of the filtrate, the white solid was purified with a short silica gel chromatography, by using a 3:1 mixture of hexane and ethyl acetate as an eluent, to afford 233 mg of 1-benzyl-4-phenyl-1H-1,2,3-triazole 3a (99 %) as a white solid.

2.4.7 Neat Reaction Procedure (Eq. 2.2)

The reaction of 1a (14.2 mmol, 1.59 mL) and 2a (14.2 mmol, 1.77 mL) performed using 0.1 mol% of cat-1 (0.9 mg) in the absence of solvent at 65 °C for 2 h. The work-up procedure is same to above. 3a was obtained in 99 % yield (3.33 g).

2.4.8 Leaching Experiment (Fig. 2.9)

Figure 2.9a, leaching experiment for the reaction of 1a and 2a was carried out by using 5 mol% of cat-1 in toluene (0.5 M) at 65 °C. Cat-1 was removed from reaction vial after 3 h, giving 3a in 38 % NMR yield. The reaction was continuously heated for 1 h in the absence of cat-1, producing 3a in 40 %. After being heated another 1 h, the yield of 3a was not changed (40 %). Then, cat-1 was put
back into the reaction mixture and heated for 1 h gave 3a in 53 % yield. The reaction was finally complete within 3 h produced 3a in 99 % yield.

On the other hand, under same reaction conditions, the controlled reaction without removal of cat-1 was complete in 6 h, giving 3a in 98 % yield.

Figure 2.9b, leaching experiment for the reaction of 1a and 2a was carried out by using 5 mol% of cat-1 in THF (2 M) at 65 °C. Cat-1 was removed from reaction vial after 2.5 h, giving 3a in 24 % NMR yield. The reaction was continuously heated for 1.5 h in the absence of cat-1, producing 3a in 37 %. Then, cat-1 was put back into the reaction mixture and heated for 1 h gave 3a in 66 % yield. The reaction was finally complete within 1 h produced 3a in 99 % yield.

2.4.9 Reusability (Fig. 2.5)

The reaction of 1a and 2a for the recycle was carried out in toluene (0.5 M) at 65 °C for 6 h in the presence of cat-1 catalyst. After filtration, cat-1 was washed with acetone and dried on vacuum. The recovered cat-1 was continuously used for 10 times. The 1H NMR yield of 3a for every cycle is shown in Table 2.3.

2.4.10 Formation of Nanostructured Copper Acetylide (Figs. 2.10 and 2.11)

A toluene (2 M, 0.7 mL) solution of cat-1 (2 mol%, 1.7 mg) and phenyl acetylene 1a (1.34 mmol, 150 μL) was stirred for 3.5 h, the cat-1 surface was turned to yellow (Fig. 2.11). The SEM image showed that the surface was covered with a uniform grass-like material. When the grass-like material was treated with an excess amount of benzyl azide 2a, the grass-like material was disappeared from SEM image. The nanoporous structure of cat-1 surface was recovered and a small amount of 3a was observed from 1H NMR and GC-MS. The grass-like material should be the nanostructured copper acetylide.

2.4.11 Analytical Data

1-Benzyl-4-phenyl-1H-1,2,3-triazole (3a) [48]

\[
\text{Ph} \quad \begin{array}{c}
\text{N} \\
\text{N}
\end{array} \quad \text{N-Bn}
\]

White solid; 1H NMR (500 MHz, CDCl₃) δ 7.77—7.75 (m, 2H), 7.64 (s, 1H), 7.36—7.30 (m, 5H), 7.28—7.22 (m, 3H), 5.49 (s, 2H); 13C NMR (125 MHz,
CDCl₃) δ 148.0, 134.6, 130.4, 128.9, 128.6, 128.5, 128.0, 127.8, 125.5, 119.5, 54.0; HRMS (ESI positive) calcd for C₁₅H₁₃N₃ [M + Na]⁺: 258.1002, found: 258.1001.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)pyridine (3b) [49]

![Chemical Structure](image)

White solid; ¹H NMR (300 MHz, CDCl₃) δ 8.45–8.42 (m, 1H), 8.10–8.06 (m, 1H), 7.97 (s, 1H), 7.68–7.63 (m, 1H), 7.27–7.21 (m, 5H), 7.12–7.07 (m, 1H), 5.48 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 150.0, 149.2, 148.5, 136.7, 134.2, 129.0, 128.6, 128.1, 122.7, 121.8, 120.0, 54.2; HRMS (ESI positive) calcd for C₁₄H₁₂N₄ [M + Na]⁺: 259.0954, found: 259.0954.

1-Benzyl-4-(thiophen-3-yl)-1H-1,2,3-triazole (3c) [49]

![Chemical Structure](image)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.60 (m, 1H), 7.54 (s, 1H), 7.38-7.23 (m, 7H), 5.50 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 134.6, 131.7, 129.0, 128.6, 127.9, 126.2, 125.6, 120.9, 119.2, 54.0; HRMS (ESI positive) calcd for C₁₃H₁₁N₃S [M + Na]⁺: 264.0566, found: 264.0566.

1-Benzyl-4-pentyl-1H-1,2,3-triazole (3d) [50]

![Chemical Structure](image)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.24 (m, 3H), 7.17-7.15 (m, 2H), 7.12 (s, 1H), 5.39 (s, 2H), 2.59 (t, J = 7.6 Hz, 2H), 1.57-1.53 (m, 2H), 1.24-1.21 (m, 4H), 0.79 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 134.9, 128.8, 128.4, 127.7, 120.3, 53.7, 31.2, 28.9, 25.5, 22.2, 13.8; HRMS (ESI positive) calcd for C₁₄H₁₉N₃ [M + Na]⁺: 252.1471, found: 252.1471.

1-Benzyl-4-cyclohexyl-1H-1,2,3-triazole (3e) [51]

![Chemical Structure](image)

White solid; ¹H NMR (300 MHz, CDCl₃) δ 7.31-7.20 (m, 3H), 7.18-7.15 (m, 2H), 7.09 (s, 1H), 5.40 (s, 2H), 2.69-2.62 (m 1H), 1.95-1.94 (m, 2H), 1.71-1.60 (m, 3H), 1.37-1.10 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 154.0, 134.9, 128.8, 128.3,
127.8, 119.0, 53.7, 35.1, 32.8, 25.9, 25.8; HRMS (ESI positive) calcd for C_{15}H_{19}N_{3} [M + Na]^+: 264.1471, found: 264.1471.

1-Benzyl-4-(tert-butyl)-1\(H\)-1,2,3-triazole (3f) [48]

\[
\text{White solid; } ^1\text{H NMR (500 MHz, CDCl}_3\text{)} \delta 7.35-7.32 (m, 3H), 7.26-7.24 (m, 2H), 7.19 (s, 1H), 5.46 (s, 1H), 1.31 (s, 9H); ^13\text{C NMR (125 MHz, CDCl}_3\text{)} \delta 157.9, 134.9, 128.8, 128.3, 127.8, 118.2, 53.6, 30.5, 30.1; HRMS (ESI positive) calcd for C_{13}H_{17}N_{3} [M + Na]^+: 238.1315, found: 238.1314.
\]

(1-Benzyl-1\(H\)-1,2,3-triazol-4-yl)methanol (3g) [51]

\[
\text{White solid; } ^1\text{H NMR (300 MHz, CDCl}_3\text{)} \delta 7.40 (s, 1H), 7.28-7.26 (m, 3H), 7.19-7.16 (m, 2H), 5.39 (s, 2H), 4.64 (d, } J = 5.1 \text{ Hz, 2H), 4.20 (s, 1H); ^13\text{C NMR (75 MHz, CDCl}_3\text{)} \delta 148.1, 134.4, 128.9, 128.5, 127.9, 121.7, 55.8, 53.9; HRMS (ESI positive) calcd for C_{10}H_{11}N_{3}O [M + Na]^+: 212.0794, found: 212.0793.
\]

1,4-Diphenyl-1\(H\)-1,2,3-triazole (3h) [48]

\[
\text{White solid; } ^1\text{H NMR (300 MHz, CDCl}_3\text{)} \delta 8.19 (s, 1H), 7.91 (d, } J = 7.2 \text{ Hz, 2H), 7.79 (d, } J = 7.8 \text{ Hz, 2H), 7.56-7.51 (m, 2H), 7.48-7.43 (m, 3H), 7.39-7.34 (m, 1H); ^13\text{C NMR (75 MHz, CDCl}_3\text{)} \delta 148.3, 137.0, 130.2, 129.7, 128.8, 128.7, 128.3, 125.8, 120.4, 117.5; HRMS (ESI positive) calcd for C_{14}H_{11}N_{3} [M + Na]^+: 244.0845, found: 244.0845.
\]

1-Cinnamyl-4-phenyl-1\(H\)-1,2,3-triazole (3i) [52]

\[
\text{Light yellow solid; } ^1\text{H NMR (500 MHz, CDCl}_3\text{)} \delta 7.80 (d, } J = 7.5 \text{ Hz, 2H), 7.76 (s, 1H), 7.38-7.35 (m, 4H), 7.33-7.21 (m, 4H), 6.30 (d, } J = 16.0 \text{ Hz, 1H), 6.31 (dt, } J = 16.0 \text{ Hz, } J = 6.5 \text{ Hz, 1H), 5.09-5.08 (m, 2H); ^13\text{C NMR (125 MHz, CDCl}_3\text{)} \delta 147.9, 135.3, 135.1, 130.5, 128.7, 128.6, 128.4, 128.0, 126.5, 125.5, 121.8, 119.3, 52.2; HRMS (ESI positive) calcd for C_{17}H_{15}N_{3} [M + Na]^+: 284.1158, found: 284.1158.
\]
Ethyl 2-(4-phenyl-1H-1,2,3-triazol-1-yl)acetate (3j) \[51]\]

White solid; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.90 (s, 1H), 7.82 (d, \(J = 7.2\) Hz, 2H), 7.40 (t, \(J = 7.6\) Hz, 2H), 7.32 (t, \(J = 7.6\) Hz, 1H), 5.17 (s, 2H), 4.24 (q, \(J = 7.2\) Hz, 2H), 1.27 (t, \(J = 7.2\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 166.2, 148.0, 130.2, 128.7, 128.1, 125.6, 120.9, 62.3, 50.8, 13.9; HRMS (ESI positive) calcd for C\(_{12}\)H\(_{13}\)N\(_3\)O\(_2\) [M + Na\(^+\)]: 254.0900, found: 254.0900.

\(N\)-Benzyl-1-(1-phenyl-1H-1,2,3-triazol-4-yl)methanamine (3k)

Brown solid; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.66-7.62 (m, 2H), 7.46-7.39 (m, 2H), 7.37-7.16 (m, 6H), 3.93 (s, 2H), 3.81 (s, 2H), 1.86 (s, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 147.4, 137.0, 129.5, 128.4, 128.3, 128.1, 126.9, 124.6, 120.3, 119.8, 53.2, 43.9; HRMS (ESI positive) calcd for C\(_{16}\)H\(_{16}\)N\(_4\) [M + Na\(^+\)]: 287.1267, found: 287.1266.

4-Methyl-\(N\)-(1-phenyl-1H-1,2,3-triazol-4-yl)methyl)benzenesulfonamide (3l)

Yellow solid; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.80 (s, 1H), 7.73 (d, \(J = 8.4\) Hz, 2H), 7.62-7.59 (m, 2H), 7.50-7.47 (m, 2H), 7.44-7.40 (m, 1H), 7.26-7.23 (m, 2H), 5.72 (s, 1H), 4.35 (d, \(J = 6.0\) Hz, 2H), 2.34 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 144.4, 143.6, 136.7, 129.7, 129.6, 128.8, 127.1, 124.8, 120.5, 120.3, 38.6, 21.3; HRMS (ESI positive) calcd for C\(_{16}\)H\(_{16}\)N\(_4\)O\(_2\)S [M + Na\(^+\)]: 351.0886, found: 351.0885.

\(N,N\)-diisopropyl-2-phenyl-\(N\')-tosylacetimidamide

White solid; \(^1\)H NMR (300 MHz CDCl\(_3\)) \(\delta\) 7.85 (d, \(J = 8.1\) Hz, 2H), 7.32-7.20 (m, 7H), 4.42 (s, 2H), 4.06-3.97 (m, 1H), 3.51-3.42 (m, 1H), 2.40 (s, 3H), 1.41 (d, \(J = 6.6\) Hz, 6H), 0.88 (d, \(J = 6.6\) Hz, 6H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 163.3, 141.4, 141.4, 134.8, 128.9, 128.6, 127.8, 126.6, 126.0, 50.3, 47.9, 38.5, 21.3, 19.6, 19.6; HRMS (ESI positive) calcd for C\(_{21}\)H\(_{28}\)N\(_2\)O\(_2\)S [M + Na\(^+\)]: 395.1764, found: 395.1764.
2-cyclohexyl-N,N-diisopropyl-N'-tosylacetimidamide

White solid; 1H NMR (300 MHz CDCl$_3$) δ 7.81 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 4.17-4.09 (m, 1H), 3.54-3.45 (m, 1H), 2.94 (d, J = 7.2 Hz, 2H), 2.40 (s, 3H), 1.77-1.67 (m, 6H), 1.31-1.28 (m, 7H), 1.23-1.21 (m, 10H); 13C NMR (75 MHz, CDCl$_3$) δ 164.7, 142.0, 141.1, 128.8, 125.9, 50.2, 47.8, 38.6, 37.1, 32.5, 26.4, 25.9, 21.3, 20.5, 20.1; HRMS (ESI positive) calcd for C$_{21}$H$_{34}$N$_2$O$_2$S [M + Na]$^+$: 401.2233, found: 401.2233.

N,N-diallyl-2-phenyl-N’-tosylacetimidamide

Yellow liquid; 1H NMR (300 MHz CDCl$_3$) δ 7.80 (d, J = 8.1 Hz, 2H), 7.30-7.14 (m, 7H), 5.85-5.72 (m, 1H), 5.54-5.41 (m, 1H), 5.14 (dd, J = 10.2 Hz, 17.1 Hz, 4H), 4.42 (s, 2H), 4.11 (d, J = 6.3 Hz, 2H), 3.77 (d, J = 4.8 Hz, 2H), 2.38 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 165.6, 141.7, 140.9, 133.9, 131.2, 131.1, 128.9, 128.8, 127.8, 126.7, 126.1, 118.4, 118.0, 50.6, 50.1, 36.5, 21.2; HRMS (ESI positive) calcd for C$_{21}$H$_{24}$N$_2$O$_2$S [M + Na]$^+$: 391.1451, found: 391.1451.

2.4.12 1H and 13C NMR Spectra

![NMR Spectra](image-url)
2.4 Experimental Section
Nanoporous Copper Metal Catalyst in Click Chemistry

[Chemical structure images]

Diagram:
- TsHν
- N
- N
- Ph
- 31

Diagram:
- Tsν
- N
- N
- Ts
- N

Graph:
- PPM
- 0
- 25
- 50
- 75
- 100
- 125
- 150
- 175
- 200

Graph:
- 0
- 2
- 4
- 6
- 8
- 10
- 12
- 14

Labels:
- 7.261
- 7.261
- 7.261
- 7.261
- 7.261
- 7.261
- 7.261
- 7.261
References

29. Sharghi H, Khalifeh R, Mahdi Doroodmand M (2009) Copper nanoparticles on charcoal for multicomponent catalytic synthesis of 1,2,3-triazole derivatives from benzyl halides or alkyl halides, terminal alkynes and sodium azide in water as a “green” solvent. Adv Synth Catal 351:207–218

References

47. Wang D, Li N, Zhao M et al (2010) Solvent-free synthesis of 1,4-disubstituted 1,2,3-triazoles using a low amount of Cu(PPh3)2NO3 complex. Green Chem 12:2120–2123
Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions
Yan, M.
2014, XVI, 123 p. 153 illus., 16 illus. in color., Hardcover
ISBN: 978-4-431-54930-7