Contents

Part I Fundamental Theory

1. **Overview of the Operating Principles of Lasers**
 1.1 Optical Emission
 1.2 Coherent Light
 1.3 Fundamental Structure of Laser
 1.4 Typical Structure of Semiconductor Laser
 1.5 Material
 1.6 Injection Mechanism
 1.7 Output Light
 1.8 Lasing Mode
 Bibliography

2. **The Photon**
 2.1 Analytical Approaches
 2.2 Principles of Classical Mechanics
 2.3 Principles of Quantum Mechanics
 2.4 Procedure for Quantization
 2.5 Classical Form of Maxwell’s Equations
 2.6 Obtaining Quantum Mechanical Operators from Classical Physical Quantities
 2.7 Quantization of the Optical Wave
 2.8 Remark on the Photon
 2.9 The Uncertainty Principle
 2.10 Coherent State
 2.11 Interaction Between the Optical Wave and a Charged Particle
 2.12 Analysis of Electron Transition Using a Fully Quantized Treatment

3. **Laser Oscillation**
 3.1 Representation of Optical Amplification with Laser Polarization
3.2 Conditions for Laser Oscillation in Traveling Wave Model... 38
3.3 Amplification and Lasing Conditions in Standing Wave Model... 41
3.4 Note on Laser Oscillation.................... 45
3.5 Modal Power and Optical Spectrum................. 47

4 Waveguides.. 49
4.1 Method to Analyze Two-Dimensional Cross-Section........ 49
4.2 Guiding Modes Taking into Account Gain and Loss..... 53
4.3 Stripe Structures.......................... 63
Bibliography... 64

5 Density Matrix of a Semiconductor Material............. 65
5.1 Quantum Statistics.......................... 65
5.2 Dynamic Equation of the Density Matrix.............. 67
5.3 Energy State in Semiconductor Material.............. 68
5.4 Interaction Hamiltonian....................... 69
5.5 Dipole Moment.............................. 71
5.6 Additional Phenomena........................ 73
5.7 Intraband Relaxation......................... 76
Bibliography... 79

6 Gain Coefficient and Rate Equation..................... 81
6.1 Laser Polarization.......................... 81
6.2 Amplification Mechanism....................... 84
6.3 Representation by Continuous Energy Levels in Semiconductor Material......................... 87
6.4 Deviation of Refractive Index................... 94
6.5 Plasma Effect.................................. 96
6.6 Rate Equation for the Electron Density............ 96
6.7 Spontaneous Emission and Electron Life Time........ 98
6.8 Rate Equation for the Photon Number Including Spontaneous Emission......................... 103
Bibliography... 104

7 Typical Operating Characteristics.......................... 105
7.1 Threshold Current........................... 105
7.2 Quantum Efficiency.......................... 106
7.3 Direct Modulation............................ 110
Bibliography... 112
Part II Advanced Theory for Mode Competition and Noise

8 Nonlinear Gain
- 8.1 Redefinition of the Gain Coefficient .. 115
- 8.2 Perturbation Expansion of Density Matrix 117
- 8.3 Nonlinear Polarization and Gain Coefficient 122
- 8.4 Effect from Higher Order Transverse Mode 128
- 8.5 Variation of Electron Density ... 130
- 8.6 Frequency Beating of the Injected Electron Density with Lasing Modes . 133
- 8.7 Asymmetric Gain Saturation Coefficient 135
- 8.8 Relation Among Nonlinear Gain Coefficients 139
- 8.9 Improved Rate Equations .. 141
- Bibliography ... 142

9 Mode Competition
- 9.1 Two Modes Competition with Symmetric Gain Saturation 143
- 9.2 Mode Competition with Asymmetric Gain Saturation 147
- 9.3 Single Mode Operation by Help of Mode Selective Cavity 153
- Bibliography ... 155

10 Noise
- 10.1 Classification of Noise .. 157
- 10.2 Introduction of the Noise Sources ... 159
 - 10.2.1 Noise Sources for Photon Number and Electric Phase 159
 - 10.2.2 Noise Source for the Electron Density 163
- 10.3 Frequency Components of Noise Sources 164
- 10.4 Noise Analysis Under Stable Single Mode Operation 165
 - 10.4.1 Using Equations .. 165
 - 10.4.2 Intensity Noise ... 166
 - 10.4.3 Frequency Noise and Spectrum Linewidth 171
- 10.5 Mode Competition Noise .. 173
 - 10.5.1 Mode Competition due to Symmetric Gain Saturation 173
 - 10.5.2 Mode Competition Including Asymmetric Gain Saturation 177
- 10.6 Optical Feedback Noise ... 180
 - 10.6.1 Model of Optical Feedback ... 180
 - 10.6.2 Calculated Examples ... 183
 - 10.6.3 Mechanism of Noise Generation 184
- 10.7 Noise Reduction ... 188
 - 10.7.1 Superposition of High Frequency Current 188
 - 10.7.2 Use of Self-Pulsation Lasers ... 192

Bibliography
- ... 128
Part III Structures for Superior Characteristics in the Semiconductor Lasers

11 Quantum Well Structure .. 199
 11.1 What is a Quantum Well? ... 199
 11.2 Advantage of Using Quantum Well Structures 202
 11.3 Various Types of Quantum Well Structure 203
 11.4 Polarization Dependent Gain 205
 11.4.1 Dipole Moment .. 205
 11.4.2 Dipole Moment in Bulk Material 207
 11.4.3 Dipole Moment in the Quantum Well Laser 208
 11.4.4 Lasing Gain ... 209
 11.5 Strained Quantum Well .. 211
 11.6 Quantum Well Structures with Higher Dimension 215
 Bibliography ... 217

12 Distributed Feedback and Mode Selective Lasers 219
 12.1 Distributed Feedback Laser 219
 12.1.1 Model of Analysis .. 219
 12.1.2 Coupled Wave Equations 221
 12.1.3 Oscillation Condition 223
 12.1.4 Deriving the Oscillation Condition for a Fabry–Perot Cavity Laser .. 224
 12.1.5 Deriving the Oscillation Condition for a Long Nonreflecting Cavity ... 225
 12.1.6 Calculated Example of the Threshold Gain 226
 12.1.7 A DFB Laser with a \(\lambda/4 \) Phase Shift Structure ... 226
 12.2 Distributed Bragg Reflector Laser 228
 12.3 Wavelength Tunable Laser ... 230
 12.4 Various Structures for Mode Selective Laser 232
 Bibliography ... 233

13 Surface Emitting Lasers ... 235
 13.1 Fundamental Configuration and Oscillation Condition 235
 13.2 Examples of Fabricated Structures 238
 Bibliography ... 239
Appendix 1: Derivations of the Annihilation and Creation Operators 241
Appendix 2: Proof of the Uncertainty Principle .. 245
Appendix 3: Classical Hamiltonian Dynamics for a Charged Particle in an Electromagnetic Field 247
Appendix 4: Derivation of the Classical Lorentz Force from the Quantum Mechanical Schrödinger Equation 249
Appendix 5: Analysis of Electron Transition Probability Based on the Fully Quantized Treatment 255
Appendix 6: Identity Operator .. 263
Appendix 7: Dynamic Motion of a Classical Dipole ... 265
Appendix 8: Kramers–Kronig Relation .. 269
Appendix 9: Classical Analysis of Plasma Effect ... 273
Appendix 10: Amplified Spontaneous Emission ... 277
Appendix 11: Spectrum of Correlated Value ... 285
Appendix 12: Calculating Procedure of the Mode Gain for MQW Structures ... 289
Index ... 297
Theory of Semiconductor Lasers
From Basis of Quantum Electronics to Analyses of the
Mode Competition Phenomena and Noise
Yamada, M.
2014, XI, 303 p. 137 illus., 1 illus. in color., Hardcover
ISBN: 978-4-431-54888-1