Contents

1 General Introduction ... 1
 1.1 Metal Complexes Bearing π-Conjugated Ligands 1
 1.1.1 Photophysics of Metal Complexes Bearing
 π-Conjugated Chelating Ligands 1
 1.1.2 Molecular Switches Based on Metal Complexes
 Bearing π-Conjugated Ligands 4
 1.2 Copper Complexes Bearing Two Bidentate Ligands
 Including Diimines .. 6
 1.3 Metal Complexes Bearing Pyridylpyrimidine Derivatives 10
 1.4 Pyrimidine Ring Rotation in Copper Complexes 11
 1.4.1 The Aim of Our Previous Work 11
 1.4.2 Essential Points of this System 11
 1.4.3 Details of this System 13
 1.5 The Aim of this Work ... 17
 References ... 19

2 Details of Molecular Bistability Based on Pyrimidine
 Ring Rotation in Copper(I) Complexes 25
 2.1 Introduction .. 25
 2.1.1 Ion Pairing in Metal Complexes 25
 2.1.2 The Aim of this Study 26
 2.1.3 Molecular Design 26
 2.1.4 Contents of this Chapter 26
 2.2 Experimental Section ... 27
 2.3 Synthesis and Characterization of Rotational
 Equilibrium in Solution 32
 2.4 Characterization for Intramolecular Process 36
 2.5 Crystallography .. 41
 2.6 Thermodynamics of Rotation in Solution 45
 2.6.1 Results ... 45
 2.6.2 Discussion .. 51
 2.6.3 Notes About the Model 56
 2.7 Rate for the Isomerization in a Solution State 57
3 Dual Emission Caused by Ring Rotational Isomerization of a Copper(I) Complex

3.1 Introduction
 3.1.1 The Aim of this Study
 3.1.2 Molecular Design
 3.1.3 Contents of this Chapter

3.2 Experimental Section

3.3 Rotational equilibrium

3.4 Absorption Spectra and Steady-State Emission Spectra

3.5 Time-Resolved Emission Spectra

3.6 Temperature Dependence of Time-Resolved Emission Spectra

3.7 Energy Diagram

3.8 Other Physical Properties

3.9 Conclusion

References

4 Repeatable Copper(II)/(I) Redox Potential Switching Driven Visible Light-Induced Coordinated Ring Rotation

4.1 Introduction
 4.1.1 The Aim of this Study
 4.1.2 Molecular Design
 4.1.3 Contents of this Chapter

4.2 Experimental Section

4.3 Synthesis and Characterization

4.4 Electrochemistry

4.5 Thermodynamics and Kinetics for the Rotation

4.6 Photophysical Properties

4.7 Photodriven and Heat-Driven Rotation with Redox Mediator
 4.7.1 Results
 4.7.2 Mechanism

4.8 Photodriven and Heat-Driven Rotation Under Partial Oxidation

4.9 Factors Dominating Photorotation Rate

4.10 Conclusion

References

5 Concluding Remarks

About the Author
Photofunctionalization of Molecular Switch Based on Pyrimidine Ring Rotation in Copper Complexes
Nishikawa, M.
2014, XII, 123 p. 105 illus., 23 illus. in color., Hardcover
ISBN: 978-4-431-54624-5