Contents

1 Introduction ... 1
References .. 4

2 Evolution History of Extrasolar Planetary Systems 5
2.1 Detection and Orbital Diversity of Exoplanets 5
2.1.1 Radial Velocity Method 6
2.1.2 Transit Method .. 9
2.1.3 Correlations of Planetary Parameters 13
2.2 Planetary Migration Scenarios 15
2.2.1 Disk Migration .. 15
2.2.2 Planet-Planet Scattering 15
2.2.3 Kozai Migration .. 16
2.3 Measurements of the Rossiter–McLaughlin Effect 17
2.3.1 Introduction ... 17
2.3.2 Observational Results 19
References .. 21

3 Improved Modeling of the Rossiter–McLaughlin Effect 23
3.1 Modeling of the RM Effect for Transiting Exoplanets 23
3.2 Derivation of the New Analytic Formula for the RM Effect .. 25
3.2.1 Analytic Expression for the Iodine Cell Technique 28
3.2.2 Analytic Expression for the Simultaneous Reference Technique ... 32
3.3 Validity of the Analytic Formula 36
3.3.1 Comparison with Numerical Simulations for the Iodine Cell Technique 36
3.3.2 Comparison with Numerical Simulations for the Simultaneous Reference Technique 42
3.3.3 Sensitivity of the Formula to Line Parameters 45
3.3.4 Comparison with the Published “Calibrations” for Keck/HIRES ... 48
3.4 Impact of Differential Rotations of Stars 51
3.5 Discussion .. 53
References .. 55

xi
4 New Observations and Improved Analyses of the Rossiter–McLaughlin Effect

4.1 HAT-P-11

4.1.1 Introduction of the HAT-P-11 System

4.1.2 Observations

4.1.3 Analysis

4.1.4 Results and Discussion

4.2 XO-3

4.2.1 Introduction of the XO-3 System

4.2.2 Observations

4.2.3 Analysis and Results

4.2.4 Discussion

4.3 KOI-94

4.3.1 Introduction of the KOI-94 System

4.3.2 Observations and Data Reduction

4.3.3 Analysis and Results

4.3.4 Discussion

4.4 Reanalysis of the Archived Data for Simultaneous Reference Technique

4.4.1 HD 189733

4.4.2 CoRoT-3

4.4.3 HAT-P-8

References

5 Toward the Measurements of Spin-Orbit Relations for Small Planets

5.1 Introduction

5.2 Principle

5.3 Observation

5.4 Analyses and Results

5.4.1 Estimation of Rotational Periods

5.4.2 Estimation of Spectroscopic Parameters

5.4.3 Evidence of Possible Spin-Orbit Misalignments

5.5 Discussion

5.5.1 Correlation Between Stellar Inclinations and Other System Parameters

5.5.2 Comparison with Empirical Estimates for P_s

5.5.3 Impact of Differential Rotation

5.5.4 Comparison with the RM Measurement for Kepler-8

5.6 Summary

References
6 Summary and Future Prospects .. 121
 References .. 123

Appendix A: Supplement Calculations on the Analytic Description
 of the RM Effect ... 125

Curriculum Vitae .. 133
Measurements of Spin-Orbit Angles for Transiting Systems
Toward an Understanding of the Migration History of Exoplanets
Hirano, T.
2014, XV, 134 p. 45 illus., 25 illus. in color., Hardcover
ISBN: 978-4-431-54585-9