Contents

1 Nevanlinna Theory of Meromorphic Functions
 1.1 The First Main Theorem
 1.2 The Second Main Theorem
 1.3 Examples of Functions of Finite Order

2 The First Main Theorem
 2.1 Plurisubharmonic Functions
 2.1.1 One Variable
 2.1.2 Several Variables
 2.2 Poincaré–Lelong Formula
 2.3 The First Main Theorem
 2.3.1 Meromorphic Mappings, Divisors and Line Bundles
 2.3.2 Differentiable Functions on Complex Spaces
 2.3.3 Metrics and Curvature Forms of Line Bundles
 2.4 The First Main Theorem for Coherent Ideal Sheaves
 2.5 Order Functions
 2.5.1 Metrics
 2.5.2 Cartan’s Order Function
 2.5.3 A Family of Rational Functions
 2.5.4 Characterization of Rationality
 2.6 Nevanlinna’s Inequality
 2.7 Ramified Covers over \mathbb{C}^n

3 Differentiably Non-degenerate Meromorphic Maps
 3.1 Lemma on Logarithmic Derivatives
 3.2 The Second Main Theorem
 3.3 Applications and Generalizations
 3.3.1 Applications
 3.3.2 Non-Kähler Counter-Example
 3.3.3 Generalizations
4 Entire Curves in Algebraic Varieties

4.1 Nochka Weights

4.2 The Cartan–Nochka Theorem

4.3 Entire Curves Omitting Hyperplanes

4.4 Generalizations and Applications

4.4.1 Derived Curves

4.4.2 Generalization to Higher Dimensional Domains

4.4.3 Finite Ramified Covering Spaces

4.4.4 The Eremenko–Sodin Second Main Theorem

4.4.5 The Second Main Theorem of Corvaja–Zannier, Evertse–Ferretti and Ru

4.4.6 Krutin’s Theorem

4.4.7 Moving Targets

4.4.8 Yamanoi’s Second Main Theorem

4.4.9 Applications

4.5 Logarithmic Forms

4.6 Logarithmic Jet Bundles

4.6.1 Jet Bundles in General

4.6.2 Jet Spaces

4.6.3 Logarithmic Jet Bundles and Logarithmic Jet Spaces

4.7 Lemma on Logarithmic Forms

4.8 Inequality of the Second Main Theorem Type

4.9 Entire Curves Omitting Hypersurfaces

4.10 The Fundamental Conjecture of Entire Curves

5 Semi-abelian Varieties

5.1 Semi-tori

5.1.1 Definition

5.1.2 Characteristic Subgroups of Complex Semi-tori

5.1.3 Holomorphic Functions

5.1.4 Semi-abelian Varieties

5.1.5 Presentations

5.1.6 Presentations of Semi-abelian Varieties

5.1.7 Inequivalent Algebraic Structures

5.1.8 Choice of Presentation

5.1.9 Construction of Semi-tori via Presentations

5.1.10 Morphisms and GAGA

5.2 Reductive Group Actions

5.3 Semi-toric Varieties

5.3.1 Toric Varieties

5.3.2 Semi-toric Varieties

5.3.3 Key Properties of Semi-toric Varieties

5.3.4 Quasi-algebraic Subgroups

5.3.5 Compactifiable Groups and Kähler Condition

5.3.6 Examples of Non-semi-toric Varieties

5.4 Jet Bundles over Semi-toric Varieties
5.5 Line Bundles on Toric Varieties .. 192
5.5.1 Ample Line Bundles ... 192
5.5.2 Leray Spectral Sequence ... 195
5.5.3 Decomposition of Line Bundles 196
5.5.4 Global Span and Very Ampleness 198
5.5.5 Stabilizer and Bigness ... 201
5.6 Good Position and Stabilizer .. 203
5.6.1 Good Position ... 203
5.6.2 Good Position and Choice of Compactification 204
5.6.3 Regular Subgroups .. 209
5.6.4 More Facts on Semi-tori ... 210
6 Entire Curves in Semi-abelian Varieties 215
6.1 Order Functions ... 215
6.2 Structure of Jet Images ... 220
6.2.1 Image of \(f \) (Case \(k = 0 \)) 220
6.2.2 Jet Projection Method .. 220
6.2.3 A Counter-Example ... 224
6.3 Compact Complex Tori .. 225
6.3.1 Entire Curves ... 225
6.3.2 Applications to Differentiably Non-degenerate Maps 233
6.4 Semi-tori: Truncation Level \(k_0 \) 235
6.5 Semi-abelian Varieties: Truncation Level 1 248
6.5.1 Truncation Level 1 .. 248
6.5.2 The Second Main Theorem for Jet Lifts 249
6.5.3 Higher Codimensional Subvarieties of \(X_k(f) \) 254
6.5.4 Proof of Theorem 6.5.1 .. 268
6.6 Applications .. 270
6.6.1 Algebraic Degeneracy of Entire Curves 270
6.6.2 Kobayashi Hyperbolicity ... 278
6.6.3 Complements of Divisors in Projective Space 279
6.6.4 Strong Green–Griffiths Conjecture 281
6.6.5 Lang’s Questions on Theta Divisors 283
6.6.6 Algebraic Differential Equations 285
7 Kobayashi Hyperbolicity .. 289
7.1 Kobayashi Pseudodistance ... 289
7.2 Brody’s Theorem ... 293
7.2.1 Brody’s Reparametrization 293
7.2.2 Hyperbolicity as an Open Property 300
7.3 Kobayashi Hyperbolic Manifolds 301
7.4 Kobayashi Hyperbolic Projective Hypersurfaces 309
7.5 Hyperbolic Embedding into Complex Projective Space 315
7.6 Brody Curves and Yosida Functions 321
7.6.1 Growth Conditions and Yosida Functions 322
7.6.2 Characterizing Brody Maps into Tori 331
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6.3</td>
<td>Brody Curves with Prescribed Points in the Image</td>
<td>332</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Ahlfors’ Currents</td>
<td>333</td>
</tr>
<tr>
<td>8</td>
<td>Nevanlinna Theory over Function Fields</td>
<td>341</td>
</tr>
<tr>
<td>8.1</td>
<td>Lang’s Conjecture</td>
<td>341</td>
</tr>
<tr>
<td>8.2</td>
<td>Nevanlinna–Cartan Theory over Function Fields</td>
<td>345</td>
</tr>
<tr>
<td>8.3</td>
<td>Borel’s Identity and Unit Equations</td>
<td>350</td>
</tr>
<tr>
<td>8.4</td>
<td>Generalized Borel’s Theorem and Applications</td>
<td>355</td>
</tr>
<tr>
<td>9</td>
<td>Diophantine Approximation</td>
<td>361</td>
</tr>
<tr>
<td>9.1</td>
<td>Valuations</td>
<td>361</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Definition and the Basic Properties</td>
<td>361</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Extensions of Valuations</td>
<td>364</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Normalized Valuations</td>
<td>364</td>
</tr>
<tr>
<td>9.2</td>
<td>Heights</td>
<td>368</td>
</tr>
<tr>
<td>9.3</td>
<td>Theorems of Roth and Schmidt</td>
<td>377</td>
</tr>
<tr>
<td>9.4</td>
<td>Unit Equations</td>
<td>383</td>
</tr>
<tr>
<td>9.5</td>
<td>The abc-Conjecture and the Fundamental Conjecture</td>
<td>385</td>
</tr>
<tr>
<td>9.6</td>
<td>The Faltings–Vojta Theorem</td>
<td>388</td>
</tr>
<tr>
<td>9.7</td>
<td>Distribution of Rational Points</td>
<td>389</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>393</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>411</td>
</tr>
<tr>
<td>Symbols</td>
<td></td>
<td>415</td>
</tr>
</tbody>
</table>
Nevanlinna Theory in Several Complex Variables and Diophantine Approximation
Noguchi, J.; Winkelmann, J.
2014, XIV, 416 p. 6 illus., Hardcover