Contents

1 **Introduction** .. 1
 References ... 5

2 **Reviews of Uncertainty Relations** 7
2.1 Heisenberg’s Gamma-Ray Microscope 7
2.2 Von Neumann’s Doppler Speed Meter 9
2.3 Kennard-Robertson’s Inequality and Schrödinger’s Inequality 11
2.4 Arthurs-Goodman’s Inequality 12
2.5 Ozawa’s Inequality 14
 References ... 17

3 **Classical Estimation Theory** 19
3.1 Parameter Estimation of Probability Distributions 19
3.2 Cramér-Rao Inequality and Fisher Information 23
3.3 Monotonicity of the Fisher Information and Čencov’s Theorem ... 28
3.4 Maximum Likelihood Estimator 30
 References ... 36

4 **Quantum Estimation Theory** 37
4.1 Parameter Estimation of Quantum States. 37
4.2 Monotonicity of the Fisher Information in Quantum Measurement ... 38
4.3 Quantum Cramér-Rao Inequality and Quantum Fisher Information ... 39
4.4 Adaptive Measurement 42
 References ... 44

5 **Expansion of Linear Operators by Generators**
 of Lie Algebra \(su(d) \) 45
5.1 Generators of Lie Algebra \(su(d) \) 45
5.2 Quantum State and Bloch Space
5.3 Observable
5.4 Quantum Measurement
5.4.1 Positive Operator-Valued Measure (POVM) Measurement
5.4.2 Projection-Valued Measure (PVM) Measurement and Spectral Decomposition
5.5 Quantum Operation
5.5.1 Unitary Evolution
5.5.2 Interaction with an Environment
5.5.3 Measurement Processes

References

6 Lie Algebraic Approach to the Fisher Information
6.1 Classical Fisher Information
6.1.1 Positive State Model
6.1.2 Block Diagonal State Model
6.1.3 Decohered State Model
6.2 SLD Fisher Information
6.2.1 Positive State Model
6.2.2 Block Diagonal State Model
6.2.3 Decohered State Model
6.3 RLD Fisher Information
6.3.1 Positive State Model
6.3.2 Block Diagonal State Model
6.3.3 Decohered State Model

References

7 Error and Disturbance in Quantum Measurements
7.1 Error in Quantum Measurement
7.1.1 Comparison with the Error Defined by Arthurs and Goodman
7.1.2 Comparison with the Error Defined by Ozawa
7.2 Disturbance in Quantum Measurement

References

8 Uncertainty Relations Between Measurement Errors of Two Observables
8.1 Setup
8.2 Heisenberg-Type Uncertainty Relation
8.3 Attainable Bound of the Product of the Measurement Errors

References
9 Uncertainty Relations Between Error and Disturbance in Quantum Measurements

- 9.1 Heisenberg’s Uncertainty Relation in Terms of Fisher Information Contents
- 9.2 Attainable Bound of the Product of Error and Disturbance

10 Summary and Discussion

References

References

122
Formulation of Uncertainty Relation Between Error and Disturbance in Quantum Measurement by Using Quantum Estimation Theory
Watanabe, Y.
2014, XIII, 122 p. 8 illus., 5 illus. in color., Hardcover
ISBN: 978-4-431-54492-0