Table of Contents

Table of Contents

- List of Figures: XIII
- List of Tables: XVI
- List of Abbreviations: XIX

1 Integration of Combined Transport into Supply Chain Concepts from a Performance Perspective: Need for Action

1.1 **Problem Formulation and Research Questions**

1.2 **Scientific-Theoretical Positioning and Research Design**

1.3 **Research Process and Thesis Outline**

2 Problem Concretisation - SCP Orientation Encourages the Integration of CT into SC Concepts

2.1 **Needs, Challenges and Instruments for SC Integration**

2.1.1 Need for SC Integration

2.1.2 Central Elements and the Fields of SC Integration

2.1.3 Normative, Operative and Strategic Challenges of SC Integration

2.1.3.1 Overview on SC Integration Challenges

2.1.3.2 Challenge 1: Main Objectives of Integrated SCs – Problems of SCM Conception

2.1.3.3 Challenge 2: Differing Operative Objectives and Problems of Shippers and CT Actors

2.1.3.4 Challenge 3: Focus on Individual Company Value Growth

2.1.4 Vulnerability of Integrated SC Concepts

2.1.5 Measures and Instruments for SC Integration

2.2 **Coping with CT Complexity in SCs**

2.2.1 Application Fields of CT

2.2.2 Service Complexity of Combined Transport Concepts

2.2.2.1 Inherent Challenges of Combined Transport

2.2.2.2 Diversity of CT Services

2.2.2.3 Diversity of CT Actors

2.2.2.4 Processes and Structure of CT Services

2.2.2.5 Service Character of CT Services

2.2.3 External Factors Increasing the Complexity of CT

2.2.3.1 Changing Shippers' Performance Requirements Challenging CT Services

2.2.3.2 Impact of Transport Policy on CT

2.2.3.3 Competitive Situation of CT and Unimodal Road Transport

2.2.4 Integrated Management of CT Concepts

2.3 **SCP Orientation – Consideration of Strategic and Operational Key Figures**

2.3.1 Fundamentals of Performance Orientation

2.3.2 Performance Understanding in a SC Context

2.3.3 Suitability of SCP as a Target System for the Integration of CT into SC Concepts

2.3.4 Development of a Target System for the Evaluation of CT Integration into SC Concepts

2.4 **Configuration Theory as Theoretical Research Approach for Integrating CT into SC Concepts**

2.4.1 Meaning of Theory Application for Application-Oriented Research

2.4.2 Theoretical Solution Approaches towards SC Integration

2.4.3 Selection of Theoretical Approaches with regard to the Research Problem and Perspective
2.4.4 Configuration Theory as an Explanation Approach for the Performance-oriented CT Integration into SC Concepts
2.4.4.1 Basics of Situative Theory
2.4.4.2 Configuration Theory as an Advancement of Situative Theory
2.4.4.3 Application of Configuration Theory to the Problem of the Performance-oriented Integration of CT into SC Concepts

2.5 Intermediate Findings

3 CT as an Element of SC Concepts
3.1 SC Concepts as the Operationalisation of SC Strategies
3.1.1 SC Strategies as the Basis for SC Concept Configuration
3.1.2 Classification Approaches for SC Strategies
3.1.3 Impact of SC Strategy on the Configuration of SC Sub-Concepts
3.1.4 Elements and Structures of SC Concepts
3.1.4.1 SC Concept Configuration in a Lean SC
3.1.4.2 SC Concept Configuration in an Agile SC
3.1.4.3 SC Concept Configuration in a Leagile SC

3.2 Development of a Classification of SCP Requirements regarding Transport Concepts

3.3 Configuration of SC Concepts
3.3.1 Transport Concepts as Linking and Embedded Elements of SC Concepts
3.3.2 Impact of Procurement Concepts on the Configuration of Transport Concepts
3.3.2.1 Meaning of the Procurement Concepts for SCP
3.3.2.2 Structures and Processes of Procurement Concepts
3.3.2.3 Classification and Configuration of Procurement Concepts — Identification of Design Variables relevant for CT Integration
3.3.3 Impact of Production Concept Configuration on Transport Concepts
3.3.3.1 Meaning of the Production Concept for SCP
3.3.3.2 Structures and Processes of Production Concepts
3.3.3.3 Classification and Configuration of Production Concepts — Identification of Design Variables relevant for CT Integration
3.3.4 Impact of Distribution Concepts on the Configuration of Transport Concepts
3.3.4.1 Meaning of the Distribution Concept for SCP
3.3.4.2 Structures and Processes of Distribution Concepts
3.3.4.3 Classification and Configuration of Distribution Concepts — Identification of Design Variables relevant for CT Integration

3.4 Development of a CT Concept Typology - Classification using SCP Profiles

3.5 Intermediate Findings

4 Conceptual Research Framework of Performance-oriented CT Integration into SC Concepts
4.1 Central Aspects of the Development of Research Propositions on the Performance-oriented CT Integration

4.2 Development of a Conceptual Research Framework and Deduction of Propositions on the Performance-oriented CT Integration into SC Concepts
4.2.1 Identification of Central Constructs and Framework Conditions
4.2.2 Middle Range Constructs — Elements and Dimensions of Central Constructs
4.2.3 Manifest, Observable Variables
4.2.4 Moderating Variables of CT Integration into SC Concepts

4.3 Cause-and-Effect Relationships between the Elements of CT and SC Concepts - Deduction of Methodological and Instrumental Implications
4.3.1 Step 1: Identification of Integration Points for CT into SC Concepts
4.3.2 Step 2: Impact of SC Strategy, SC Concept Configuration and SCP Requirements Profiles on CT Integration 172
4.3.3 Step 3: Identification of Adaptation Points for CT Concept Integration 175
4.3.4 Step 4: Situation-specific Choice of Integrative Measures and Instruments for Performance-oriented CT Integration into SC Concepts 179

4.4 Intermediate Findings 188

5 Performance-oriented Integration of Combined Line Transport into a Lean SC - A Simulation Study 190
5.1 Research Design for the Simulation Study 191
5.1.1 Scientific-theoretical Positioning of the Simulation Methodology 191
5.1.2 Advantages, Restrictions and Application Fields of Simulation Methodology 192
5.1.3 Quality Criteria for Simulation Studies 195
5.1.4 Structure and Classification of Simulation Models 197
5.1.5 Application Fields of the Simulation Methodology in Transport and SCM Science 198
5.1.6 Discrete Event Simulation as the Research Methodology for the Analysis of Performance-oriented Integration of CT into SC Concepts 201
5.2 Process Model for the Simulation Model Development 203
5.3 Step 1: Problem Formulation and Target Definition 205
5.3.1 Scope and Target Definition 205
5.3.2 Problem Formulation - Understanding the Initial SC Concept 206
5.3.3 CT Integration Scenarios 208
5.3.4 Performance Indicators for the Evaluation of Simulation Scenarios 211
5.3.5 Development of Statements on Expected Simulation Results 213
5.4 Step 2: Data Gathering and Editing for Model Configuration and Validation 216
5.5 Step 3: Development, Validation and Verification of the Simulation Model 225
5.5.1 Conceptual Model 226
5.5.2 Simulation Model 231
5.5.3 Validation and Verification 235
5.6 Step 4: Experimental Plan and Setup of Experiments 237
5.7 Step 5: Description and Analysis of Simulation Results 239
5.7.1 Basic Scenario – Modelling the ‘as-is’ Situation 239
5.7.2 CT Scenario I - Integration without Adaptation to the SC Concept 249
5.7.3 CT Scenario II – Production Concept Adaptation 260
5.7.4 CT Scenario III – Distribution Concept Adaptation 267
5.7.5 Discussion of Simulation Results 276
5.7.6 Limitations, Validity and Generalisability of Findings 284
5.8 Intermediate Findings 288

6 Implications for Science and Practice on the Performance-oriented Integration of CT into SC Concepts 290
6.1 Management Implications 290
6.2 Scientific Implications 294
6.3 Limitations and Further Research 295

References 303
Appendix A – Conducted Interviews 354
Appendix B – Simulation Model - Demand per Store and Weekday for Non-prioritized Goods 355
Appendix C – Activity Diagrams – Simulation Study 356
Integration of Combined Transport into Supply Chain Concepts
Simulation-based Potential Analysis and Practical Guidance
Bendul, J.
2014, XXI, 357 p. 79 illus., Softcover
ISBN: 978-3-8349-3957-9