Table of Contents

Foreword

Preface

Fuzzifying Spatial Relations
Hans W. Guesgen

1. **Motivation**
2. **Imprecision in Spatial Relations**
 2.1 Conceptual Neighborhoods
 2.2 Fuzzification of Allen Relations
3. **Applying Allen’s Algorithm to Fuzzy Relations**
4. **Other Fuzzy Relations**
5. **Fuzzy Constraint Satisfaction**
6. **Conclusion**

Acknowledgement

References

Path Composition of Positional Relations
Integrating Qualitative and Fuzzy Knowledge
Eliseo Clementini

1. **Introduction**
2. **Composition of Positional Relations**
 2.1 Qualitative Distance Relations
 2.2 Composition of Positional Relations
3. **Path Composition**
4. **Integrating Qualitative and Fuzzy Knowledge**
5. **Fuzzy Knowledge Coming from Particular Distance Systems**
Spatial Relations Based on Dominance of Fuzzy Sets 41
Les Sztandera

1 Spatial Relations 41
 1.1 Introduction 41
 1.2 Modeling of Spatial Relations 42
 1.3 Comparison of Definitions of Spatial Relations 43
 1.4 Summary 48

2 Spatial Relations Among Fuzzy Subsets 49
 2.1 Introduction 49
 2.2 The Idea of Projections 50
 2.3 Definitions of Spatial Relations for Fuzzy Objects 50
 2.4 Properties of Spatial Relations for Fuzzy Objects 51
 2.5 Separation Measure 53
 2.6 The Model for Spatial Relationships 55
 2.7 Results of Sample Systems 56
 2.8 Conclusions 57

References 62

Mathematical Morphology and Spatial Relationships: Quantitative, Semi-Quantitative and Symbolic Settings 63
Isabelle Bloch

1 Introduction 63

2 Basic Morphological Operations, Fuzzy and Logical Extensions 64
 2.1 Classical Morphology on Sets and Functions 64
 2.2 Fuzzy Mathematical Morphology 65
 2.3 Morpho-Logics 66

3 Computing Spatial Relationships from Mathematical Morphology: Quantitative and Semi-Quantitative Setting 69
 3.1 Set Relationships 70
 3.2 Adjacency 71
 3.3 Distances 72
 3.4 Directional Relative Position from Conditional Fuzzy Dilation 76
 3.5 Example 79

4 Spatial Representations of Spatial Relationships 81
4.1 Spatial Fuzzy Sets as a Representation Framework 81
4.2 Set Relationships 83
4.3 Adjacency 84
4.4 Distances 84
4.5 Relative Directional Position 87
4.6 Example on Brain Structures 89

5 Symbolic Representations of Spatial Relationships 90
5.1 Topological Relationships 92
5.2 Distances 93
5.3 Directional Relative Position 94

6 Conclusion 95
References 95

Understanding the Spatial Organization of Image Regions by Means of Force Histograms: A Guided Tour 99
Pascal Matsakis

1 Introduction 99

2 The Notion of the Histogram of Forces 100
2.1 Description 101
2.2 Properties 102
2.3 Inverse Problem 103

3 Comparing Force Histograms 103
3.1 Principle 104
3.2 Application to Fuzzy Scene Matching 105

4 Defining Fuzzy Spatial Relations 107
4.1 Directional Relations 107
4.2 Other Spatial Relations 111

5 Generating Linguistic Spatial Descriptions 114
5.1 Principle 115
5.2 Application to Image Scene Description 116
5.3 Application to Human-Robot Communication 117

6 Conclusion 119
Acknowledgments 120
References 120
Table of Contents

Fuzzy Spatial Relationships and Mobile Agent Technology in Geospatial Information Systems

Frederick E. Petry, Maria A. Cobb, Dia Ali, Rafal Angryk, Marcin Paprzycki, Shahram Rahimi, Lixiong Wen, Huiqing Yang

1. Introduction 123
2. Background 125
3. Fuzzy Directional Relationships and Querying 126
4. Extensions to the Model
 4.1 Extensions to the Standard MBR Representation 132
 4.2 Geometric Modeling Capabilities 136
 4.3 An Extension for Expert System Implementation 138
 4.4 A CLIPS Implementation 140
 4.5 Fuzzy Querying of Binary Spatial Relationships 140
 4.6 Modifications for Anomalous Cases 143
 4.7 Oracle Implementation 146
5. Intelligent Agent Technology
 5.1 Overview 149
 5.2 Rule-Based Reasoning 150
 5.3 Knowledge-Based Reasoning 151
 5.4 Implementation 151
6. Summary and Future Work 153

Acknowledgments 153

References 153

Using Fuzzy Spatial Relations to Control Movement Behavior of Mobile Objects in Spatially Explicit Ecological Models

Vincent B. Robinson

1. Introduction 157
 1.1 Information-Based Approaches to Ecological Modeling 158
 1.2 Framework for Spatially Explicit Ecological Modeling 159
2. Modeling Habitat Landscape
 2.1 Fuzzy Spatial Relations in Habitat Evaluation 161
 2.2 An Example of Fuzzy Habitat Evaluation 162
 2.3 Land Cover Classification and Habitat Modeling 164
3. Fuzzy Control of Spatial Movement
 3.1 Perceptual Range as Fuzzy Spatial Relation 166
 3.2 Controlling Foraging Movement 170
3.3 Controlling Exploratory Movement
3.4 Spatially Explicit Conspecific Interactions

4 Discussion
4.1 Fuzzy Rule-Base Models
4.2 Movement Direction and Memory
4.3 Fuzzy Logic and Robotics
4.4 Defining Fuzzy Spatial Relations
4.5 GIS Database Issues
4.6 Concluding Comment

References

A Fuzzy Set Model of Approximate Linguistic Terms in Descriptions of Binary Topological Relations Between Simple Regions

F. Benjamin Zhan

1 Introduction

2 Related Literature
2.1 The 9-Intersection Model of Topological Relations
2.2 Cognitive Aspects of Spatial Relations
2.3 Models of Spatial Relations Between Fuzzy Regions
2.4 Approximate Linguistic Terms in Descriptions of Spatial Relations

3 Fuzziness of Approximate Linguistic Terms — Preliminary Cognitive Evidences
3.1 Experimental Design
3.2 Results from Experiment One
3.3 Results from Experiment Two

4 A Fuzzy Set Model of Approximate Linguistic Terms

5 Discussion

6 Concluding Remarks

Acknowledgements

References

About the Editors
Applying Soft Computing in Defining Spatial Relations
Matsakis, P.; Sztandera, L.M. (Eds.)
2002, XIII, 205 p., Hardcover
ISBN: 978-3-7908-1504-7
A product of Physica-Verlag Heidelberg