CONTENTS

Preface vii

1 **Introduction** 1
 1.1 *Flexible* Models – An Opportunity for Control Theory 1
 1.2 *Flexible* Models and their Identification 2
 1.2.1 Expert Knowledge and Parameters Tuning 3
 1.2.2 Data-driven Techniques ... 4
 1.2.3 Precision and Transparency ... 5
 1.2.4 The Need for On-line Algorithms .. 6
 1.3 *Intelligent* Adaptive Systems – A Higher Level of Control 7
 1.4 Structure of the Book ... 7

Part I System Modelling: Basic Principles. 11

2 **Conventional Models** 13
 2.1 First Principles Models ... 13
 2.1.1 Heating/cooling Coil Model ... 14
 2.1.2 Fermentation Process Model .. 15
 2.2 *Black-box* Models .. 17
 2.2.1 Linear *Black-box* Models .. 17
 2.2.2 Polynomial Models .. 18
 2.2.3 Regression Models .. 19
 2.2.4 Neural Networks .. 20
 2.2.4.1 Radial-basis Functions (RBF) Neural Networks 21
 2.2.4.2 Hybrid NN-First Principles Model of a Fermentation Process 22
 2.3 Conclusion ... 22

3 **Flexible Models** 25
 3.1 *Fuzzy* Set Theory: Basic Introduction 26
3.1.1 Fuzzy Set Definition ... 27
3.1.2 Basic Operations over Fuzzy Sets 28
 3.1.2.1 T-norms .. 28
 3.1.2.2 S-norms .. 29
 3.1.2.3 Negation .. 29
 3.1.2.4 Defuzzification .. 30
 3.1.2.5 Degree of Similarity Between Fuzzy Sets 31
3.2 Models with Flexible Parameters or (In)equalities 31
 3.2.1 Models with Flexible Parameters 31
 3.2.2 Models with Flexible (In)equalities 32
3.3 Flexible Rule-based Models 34
 3.3.1 Flexible Relational Models 35
 3.3.2 Mamdani type Models 36
 3.3.3 Takagi-Sugeno type Models 37
3.4 Conclusion ... 41

Part II FLEXIBLE MODELS IDENTIFICATION 43

4 Non-linear Approach to (Off-line) Identification
 of Flexible Models ... 47
 4.1 Identification Problem Formulation 47
 4.1.1 Identification Criteria 48
 4.2 GA -Brief Introduction 49
 4.3 Centre-of-Gravity-based Crossover Operator 52
 4.3.1 CoG-based Cross-over Operator - How It Works 54
 4.3.2 CoG-based Operator - Why It Works 54
 4.3.3 Test Examples ... 57
 4.4 Encoding and Decoding Indices of Flexible Rules
 and Linguistic Terms ... 57
 4.4.1 Encoding Procedure 59
 4.4.2 Decoding a Flexible Rule 59
 4.5 Algorithm of the Non-linear Approach 62
 4.6 Conclusion .. 63

5 Quasi-linear Approach to FRB Models (Off-line) Identification 67
 5.1 Data Space Clustering 67
 5.2 Subtractive Clustering 71
 5.3 Parameters (of the Consequent Part) Estimation 72
 5.4 Flexible Rule-based Model Refinements 73
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1</td>
<td>Model Structure Simplification</td>
<td>73</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Model Parameter's Refinement/Optimisation</td>
<td>74</td>
</tr>
<tr>
<td>5.5</td>
<td>Algorithm for (Off-line) Quasi-linear Identification of FRB Models</td>
<td>75</td>
</tr>
<tr>
<td>5.6</td>
<td>Conclusion</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>Intelligent and Smart Adaptive Systems</td>
<td>79</td>
</tr>
<tr>
<td>6.1</td>
<td>Intelligent Systems</td>
<td>79</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Loose Definition</td>
<td>79</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Problems</td>
<td>80</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Importance</td>
<td>80</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Specifics</td>
<td>81</td>
</tr>
<tr>
<td>6.2</td>
<td>Smart Adaptive Systems</td>
<td>81</td>
</tr>
<tr>
<td>6.2.1</td>
<td>The Issue of Smart Adaptive Systems</td>
<td>81</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Features of a Smart Adaptive System</td>
<td>82</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Practical Implications</td>
<td>82</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Intelligent Indoor Climate Control System</td>
<td>83</td>
</tr>
<tr>
<td>6.3</td>
<td>Conclusion</td>
<td>84</td>
</tr>
<tr>
<td>7</td>
<td>On-line Identification of Flexible TSK-type Models</td>
<td>87</td>
</tr>
<tr>
<td>7.1</td>
<td>The Concept</td>
<td>87</td>
</tr>
<tr>
<td>7.2</td>
<td>Basic Phases of the Procedure</td>
<td>88</td>
</tr>
<tr>
<td>7.3</td>
<td>Potentials Up-date in On-line Mode</td>
<td>89</td>
</tr>
<tr>
<td>7.4</td>
<td>Rule-base Innovation and Modification Mechanism</td>
<td>92</td>
</tr>
<tr>
<td>7.5</td>
<td>Parameters Up-date</td>
<td>96</td>
</tr>
<tr>
<td>7.6</td>
<td>FRB Model Up-grade; 'Learning trough Experience'</td>
<td>99</td>
</tr>
<tr>
<td>7.7</td>
<td>Rule Structure and Parameters Tuning and Refinement</td>
<td>99</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Similarity-based Simplification of Linguistic Terms</td>
<td>100</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Parameters Refinement (Tuning) by Non-linear Optimisation</td>
<td>101</td>
</tr>
<tr>
<td>7.8</td>
<td>Flow-chart of the Algorithm</td>
<td>102</td>
</tr>
<tr>
<td>7.9</td>
<td>eR Control Algorithm</td>
<td>104</td>
</tr>
<tr>
<td>7.10</td>
<td>Conclusion</td>
<td>108</td>
</tr>
<tr>
<td>Part III</td>
<td>Engineering Applications</td>
<td>111</td>
</tr>
</tbody>
</table>

8 *Modelling Indoor Climate Control Systems*

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Modelling Components of HVAC Systems</td>
<td>116</td>
</tr>
</tbody>
</table>
9 On-line Modelling of Fermentation Processes

9.1 Bio-processes – Specifics of their Modelling
9.2 eR Model of a Fermentation Process
 9.2.1 Lactose Oxidation - Process Specifics
 9.2.2 Experimental Data
 9.2.3 Modelling the Process
 9.2.3.1 First Principles-based Model
 9.2.3.2 eR Model
 9.2.3.3 Analysis of the Results
9.3 Conclusion

10 Intelligent Risk Assessment

10.1 Application of eR Models in Creditworthiness Assessment
 10.1.1 Creditworthiness Assessment: Problem Specifics
 10.1.2 Flexible Rule-based System
 10.1.3 Credit Risk Assessment by a Flexible Rule-based System
10.2 Intelligent Evolving System for Risk Assessment in Civil Aviation
Evolving Rule-Based Models
A Tool for Design of Flexible Adaptive Systems
Angelov, P.P.
2002, XIII, 214 p., Hardcover
ISBN: 978-3-7908-1457-6
A product of Physica-Verlag Heidelberg