Contents

Preface vii

1 Extensions of Symmetric Operators 1
 1.1 Deficiency indices of symmetric operators 1
 1.2 The first von Neumann formula in the dense case 4
 1.3 Parametrization of symmetric and self-adjoint extensions.
 The second von Neumann formula 5
 1.4 The Cayley transform 8
 1.5 Non-densely defined symmetric operators and semi-deficiency
 subspaces .. 10
 1.6 Symmetric extensions of a non-densely defined symmetric
 operator .. 14
 1.7 Indirect decomposition and the Krasnoselskiǐ formulas 18

2 Geometry of Rigged Hilbert Spaces 23
 2.1 The Riesz-Berezansky operator 23
 2.2 Construction of the operator generated rigging 27
 2.3 Direct decomposition and analogue of the first von Neumann’s
 formula .. 28
 2.4 Regular and singular symmetric operators 34
 2.5 Closed symmetric extensions 35

3 Bi-extensions of Closed Symmetric Operators 45
 3.1 Bi-extensions .. 45
 3.2 Bi-extensions of O-operators 52
 3.3 Self-adjoint and t-self-adjoint bi-extensions 54
 3.4 The case of a densely defined symmetric operator 61

4 Quasi-self-adjoint Extensions 69
 4.1 Quasi-self-adjoint extensions of symmetric operators 69
 4.2 Quasi-self-adjoint bi-extension 81
 4.3 The (∗)-extensions and uniqueness theorems 90
4.4 The \((\ast)\)-extensions in the densely-defined case 104
4.5 Resolvents of quasi-self-adjoint extensions 110

5 The Livšic Canonical Systems with Bounded Operators \hfill 119
5.1 The Livšic canonical system and the Brodskii theorem 119
5.2 Minimal canonical systems ... 122
5.3 Couplings of canonical systems ... 124
5.4 Transfer functions of canonical systems 129
5.5 Class \(\Omega_J\) and its realization .. 135
5.6 Finite-dimensional state-space case 139
5.7 Examples .. 143

6 The Herglotz-Nevanlinna Functions and Rigged Canonical Systems \hfill 147
6.1 The Herglotz-Nevanlinna functions and their representations 147
6.2 Extended resolvents and resolution of identity 150
6.3 Definition of an L-system .. 161
6.4 Realizable Herglotz-Nevanlinna operator-functions. Class \(N(R)\) . 170
6.5 Realization of the class \(N(R)\) .. 176
6.6 Minimal realization and the theorem on bi-unitary equivalence .. 194

7 Classes of realizable Herglotz-Nevanlinna functions \hfill 205
7.1 Sub-classes of the class \(N(R)\) and their realizations 205
7.2 Class \(\Omega(R, J)\). The Potapov-Ginzburg Transformation 211
7.3 Multiplication Theorems for \(\Omega(R, J)\) classes 214
7.4 Boundary triplets and self-adjoint bi-extensions 224
7.5 The Krein-Langer \(Q\)-functions and their realizations 228
7.6 Examples .. 233

8 Normalized L-Systems \hfill 239
8.1 Auxiliary canonical system .. 239
8.2 Constant \(J\)-unitary factor .. 245
8.3 The Donoghue transform and impedance functions of scattering L-systems ... 250
8.4 Normalized \((\ast)\)-extensions and normalized L-systems 252
8.5 Realizations of \(e^{izl}\) and \(e^{il/z}\) as transfer functions of L-systems .. 256

9 Canonical L-systems with Contractive and Accretive Operators \hfill 261
9.1 Contractive extensions and their block-matrix forms 261
9.2 Quasi-self-adjoint contractive extensions of symmetric
contractions ... 269
9.3 The Weyl-Titchmarsh functions of quasi-self-adjoint contractive
extensions .. 281
9.4 Canonical L-systems with contractive state-space operators 286
9.5 The restricted Phillips-Kato extension problem ... 292
9.6 Bi-extensions of non-negative symmetric operators 308
9.7 Accretive bi-extensions .. 311
9.8 Realization of Stieltjes functions .. 321
9.9 Realization of inverse Stieltjes functions ... 334

10 L-systems with Schrödinger operator .. 341
10.1 (∗)-extensions of ordinary differential operators .. 341
10.2 Canonical L-systems with Schrödinger operator .. 344
10.3 Accretive and sectorial boundary problems for a Schrödinger operator 349
10.4 Functional model for symmetric operator with deficiency indices (1,1) 357
10.5 Accretive (∗)-extensions of a Schrödinger operator 361
10.6 Stieltjes functions and L-systems with accretive Schrödinger operator 364
10.7 Inverse Stieltjes functions and systems with Schrödinger operator 370
10.8 Stieltjes-like functions and inverse spectral problems for systems with Schrödinger operator ... 378
10.9 Inverse Stieltjes-like functions and inverse spectral problems for systems with Schrödinger operator ... 396

11 Non-self-adjoint Jacobi Matrices and System Interpolation 413
11.1 Systems with Jacobi matrices .. 414
11.2 The Stone theorem and its generalizations .. 417
11.3 Inverse spectral problems for finite dissipative Jacobi matrices 424
11.4 Reconstruction of a dissipative Jacobi matrix from its triangular form 427
11.5 System Interpolation and Sectorial Operators ... 431
11.6 The Livšic interpolation systems in the Pick form .. 436
11.7 The Nevanlinna-Pick rational interpolation with distinct poles 446
11.8 Examples ... 451

12 Non-canonical Systems .. 453
12.1 F-systems: definition and basic properties .. 455
12.2 Multiplication theorems for F-systems .. 460
12.3 Realizations in the case of a compactly supported measure 464
12.4 Definitions of NCI-systems and NCL-systems .. 470
12.5 NCI realizations of Herglotz-Nevanlinna functions 474
12.6 Realization by NCL-systems .. 480
12.7 Minimal NCL-realization ... 487
12.8 Examples and non-canonical system interpolation .. 490

Notes and Comments .. 497
Bibliography 505
Index 525
Conservative Realizations of Herglotz-Nevanlinna Functions
Arlinskii, Y. ; Belyi, S. ; Tsekanovskii, E.
2011, XVIII, 530 p., Hardcover
ISBN: 978-3-7643-9995-5
A product of Birkhäuser Basel