Preface

This is an introductory book on the general theory of relativity based partly on lectures given to students of M.Sc. Physics at my university.

The book is divided into three parts. The first part is a preliminary course on general relativity with minimum preparation. The second part builds the mathematical background and the third part deals with topics where mathematics developed in the second part is needed.

The first chapter gives a general background and introduction. This is followed by an introduction to curvature through Gauss’ Theorema Egregium. This theorem expresses the curvature of a two-dimensional surface in terms of intrinsic quantities related to the infinitesimal distance function on the surface. The student is introduced to the metric tensor, Christoffel symbols and Riemann curvature tensor by elementary methods in the familiar and visualizable case of two dimensions. This early introduction to geometric quantities equips a student to learn simpler topics in general relativity like the Newtonian limit, red shift, the Schwarzschild solution, precession of the perihelion and bending of light in a gravitational field.

Part II (chapters 5 to 10) is an introduction to Riemannian geometry as required by general relativity. This is done from the beginning, starting with vectors and tensors. I believe that students of physics grasp physical concepts better if they are not shaky about the mathematics involved.

There is perhaps more mathematics in Part II than strictly required for Part III of this introductory book. My aim has been that, after reading the book, a student should not feel discouraged when she opens advanced texts on general relativity for further reading. The advanced books introduce mathematical concepts far too briefly to be really useful to a student. And the student feels lost in the pure mathematical textbooks on differential geometry. In that sense, this book offers to fill a gap.

The final part is devoted to topics that include the action principle, weak gravitational fields, gravitational waves, Schwarzschild and Kerr solutions and the Friedman equation in cosmology. A few special topics are touched upon in the final chapter.

Many exercises are provided with hints and very often complete solutions in the last section of chapters. These exercises contain material which cannot be
ignored and has been put in this format purposely to help students learn on their own.

Note

I have generally used the female gender for the imagined student reader of the book, but occasionally, the male pronouns ‘he’ or ‘his’ are also slipped in for political correctness.

Acknowledgements

I am grateful to H.S. Mani, teacher and friend, for suggesting that I transform the notes I had written down for classroom lectures into a book and to R. Ramaswamy for useful advice and help during the final stages of the book.

I thank Pravabati Chingangbam for discussions on many points in geometry.

A preliminary version of Part I of the book was used in ‘2006 Enrichment Course in Physics’ at the Indian Institute of Astrophysics Observatory, Kodai Kanal in June 2006. I am grateful to the Organizers of the Course, particularly Professor Vinod Gaur and Dr. K. Sundara Raman for hospitality at the observatory. Richa Kulshreshtha assisted with many tutorials in that course.

I am grateful to my colleagues M. Sami, Sanjay Jhingan, Anjan Ananda Sen, Rathin Adhikari and Somasri Sen at the Center for Theoretical Physics, and Tabish Qureshi and Sharf Alam in the Physics Department, Jamia Millia Islamia, New Delhi, for helping in various ways. L. K. Pande and Patrick Dasgupta made helpful suggestions on the manuscript.

I am grateful to Basabi Bhaumik for help during the preparation of the book in many ways, too numerous to mention.

Finally, I would like to remember my science teacher in school Mr. M. C. Verma who gave me a book on Relativity to read in 1963.

Pankaj Sharan
New Delhi, 2009
Spacetime, Geometry and Gravitation
Sharan, P.
2009, XIV, 355 p., Hardcover
ISBN: 978-3-7643-9970-2
A product of Birkhäuser Basel