Contents

Preface xi

Introduction xiii

I Background on Groups, Complexity, and Cryptography 1

1 Background on Public Key Cryptography 3
 1.1 From key establishment to encryption 4
 1.2 The Diffie-Hellman key establishment 5
 1.3 The ElGamal cryptosystem 6
 1.4 Authentication 7

2 Background on Combinatorial Group Theory 9
 2.1 Basic definitions and notation 9
 2.2 Presentations of groups by generators and relators 11
 2.3 Algorithmic problems of group theory 11
 2.3.1 The word problem 11
 2.3.2 The conjugacy problem 12
 2.3.3 The decomposition and factorization problems 12
 2.3.4 The membership problem 13
 2.3.5 The isomorphism problem 14
 2.4 Nielsen's and Schreier's methods 14
 2.5 Tietze's method 16
 2.6 Normal forms 17

3 Background on Computational Complexity 19
 3.1 Algorithms 19
 3.1.1 Deterministic Turing machines 19
 3.1.2 Non-deterministic Turing machines 20
 3.1.3 Probabilistic Turing machines 21
 3.2 Computational problems 21
 3.2.1 Decision and search computational problems 21
3.2.2 Size functions ... 23
3.2.3 Stratification .. 25
3.2.4 Reductions and complete problems 26
3.2.5 Many-one reductions 27
3.2.6 Turing reductions 27
3.3 The worst case complexity 28
3.3.1 Complexity classes 28
3.3.2 Class \textbf{NP} .. 29
3.3.3 Polynomial-time many-one reductions and class \textbf{NP} 30
3.3.4 \textbf{NP}-complete problems 31
3.3.5 Deficiency of the worst case complexity 33

II Non-commutative Cryptography

4 Canonical Non-commutative Cryptography 37
4.1 Protocols based on the conjugacy search problem 37
4.2 Protocols based on the decomposition problem 39
4.2.1 “Twisted” protocol 40
4.2.2 Hiding one of the subgroups 41
4.2.3 Using the triple decomposition problem 42
4.3 A protocol based on the factorization search problem ... 43
4.4 Stickel’s key exchange protocol 43
4.4.1 Linear algebra attack 45
4.5 The Anshel-AnsheL-Goldfeld protocol 47
4.6 Authentication protocols based on the conjugacy problem . 49
4.6.1 A Diffie-Hellman-like scheme 49
4.6.2 A Fiat-Shamir-like scheme 50
4.6.3 An authentication scheme based on the twisted conjugacy problem 51
4.7 Relations between different problems 52

5 Platform Groups ... 55
5.1 Braid groups ... 55
5.1.1 A group of braids and its presentation 56
5.1.2 Dehornoy handle free form 59
5.1.3 Garside normal form 60
5.2 Thompson’s group .. 61
5.3 Groups of matrices 65
5.4 Small cancellation groups 67
5.4.1 Dehn’s algorithm 67
5.5 Solvable groups .. 68
5.5.1 Normal forms in free metabelian groups 68
5.6 Artin groups ... 71
Contents

6 Using Decision Problems in Public Key Cryptography

6.1 The Shpilrain-Zapata scheme

6.1.1 The protocol

6.1.2 Pool of group presentations

6.1.3 Tietze transformations: elementary isomorphisms

6.1.4 Generating random elements in finitely presented groups

6.1.5 Isomorphism attack

6.1.6 Quotient attack

6.2 Public key encryption and encryption emulation attacks

III Generic Complexity and Cryptanalysis

7 Distributional Problems and the Average Case Complexity

7.1 Distributional computational problems

7.1.1 Distributions and computational problems

7.1.2 Stratified problems with ensembles of distributions

7.1.3 Randomized many-one reductions

7.2 Average case complexity

7.2.1 Polynomial on average functions

7.2.2 Average case behavior of functions

7.2.3 Average case complexity of algorithms

7.2.4 Average case vs worst case

7.2.5 Average case behavior as a trade-off

7.2.6 Deficiency of average case complexity

8 Generic Case Complexity

8.1 Generic Complexity

8.1.1 Generic sets

8.1.2 Asymptotic density

8.1.3 Convergence rates

8.1.4 Generic complexity of algorithms and algorithmic problems

8.1.5 Deficiency of the generic complexity

8.2 Generic- versus average case complexity

8.2.1 Comparing generic and average case complexities

8.2.2 When average polynomial time implies generic polynomial time

8.2.3 When generically easy implies easy on average
9 Generic Complexity of NP-complete Problems
 9.1 The linear generic time complexity of subset sum problem 129
 9.2 A practical algorithm for subset sum problem 131
 9.3 3-Satisfiability ... 131

IV Asymptotically Dominant Properties and Cryptanalysis 135
 10 Asymptotically Dominant Properties ... 139
 10.1 A brief description .. 139
 10.2 Random subgroups and generating tuples 141
 10.3 Asymptotic properties of subgroups 142
 10.4 Groups with generic free basis property 143
 10.5 Quasi-isometrically embedded subgroups 145

11 Length-Based and Quotient Attacks 149
 11.1 Anshel-Anshel-Goldfeld scheme 149
 11.1.1 Description of the Anshel-Anshel-Goldfeld scheme 149
 11.1.2 Security assumptions of the AAG scheme 150
 11.2 Length-based attacks ... 152
 11.2.1 A general description 152
 11.2.2 LBA in free groups .. 155
 11.2.3 LBA in groups from $\mathcal{F}\beta_{exp}$ 156
 11.3 Computing the geodesic length in a subgroup 157
 11.3.1 Related algorithmic problems 158
 11.3.2 Geodesic length in braid groups 159
 11.4 Quotient attacks ... 161
 11.4.1 Membership problems in free groups 162
 11.4.2 Conjugacy problems in free groups 164
 11.4.3 The MSP and SCSP* problems in groups with “good” quotients ... 167

Bibliography 169

Abbreviations and Notation 179

Index 181