Contents

Introduction ... xiii

Part I Preliminaries

1 Set Theory
 1.1 Axioms of Set Theory ... 3
 1.2 Ordered sets ... 5
 1.3 Ordinal numbers .. 6
 1.4 Sets of ordinal numbers .. 8
 1.5 Cardinality of ordinal numbers 10
 1.6 Transfinite induction .. 12
 1.7 The Zermelo theorem ... 14
 1.8 Lemma of Kuratowski-Zorn 15

2 Topology
 2.1 Category .. 19
 2.2 Baire property .. 23
 2.3 Borel sets .. 25
 2.4 The space \(z \) ... 28
 2.5 Analytic sets ... 32
 2.6 Operation A ... 35
 2.7 Theorem of Marczewski ... 37
 2.8 Cantor-Bendixson theorem 39
 2.9 Theorem of S. Piccard .. 42

3 Measure Theory
 3.1 Outer and inner measure .. 47
 3.2 Linear transforms .. 54
 3.3 Saturated non-measurable sets 56
 3.4 Lusin sets .. 59
 3.5 Outer density ... 61
 3.6 Some lemmas .. 63
3.7 Theorem of Steinhaus ... 67
3.8 Non-measurable sets ... 71

4 Algebra
4.1 Linear independence and dependence 75
4.2 Bases ... 78
4.3 Homomorphisms ... 83
4.4 Cones .. 87
4.5 Groups and semigroups ... 89
4.6 Partitions of groups ... 95
4.7 Rings and fields .. 98
4.8 Algebraic independence and dependence 101
4.9 Algebraic and transcendental elements 103
4.10 Algebraic bases ... 105
4.11 Simple extensions of fields .. 106
4.12 Isomorphism of fields and rings 108

Part II Cauchy’s Functional Equation and Jensen’s Inequality

5 Additive Functions and Convex Functions
5.1 Convex sets ... 117
5.2 Additive functions ... 128
5.3 Convex functions ... 130
5.4 Homogeneity fields .. 137
5.5 Additive functions on product spaces 138
5.6 Additive functions on \(\mathbb{C} \) .. 139

6 Elementary Properties of Convex Functions
6.1 Convex functions on rational lines 143
6.2 Local boundedness of convex functions 148
6.3 The lower hull of a convex functions 150
6.4 Theorem of Bernstein-Doetsch 155

7 Continuous Convex Functions
7.1 The basic theorem ... 161
7.2 Compositions and inverses ... 162
7.3 Differences quotients ... 164
7.4 Differentiation ... 168
7.5 Differential conditions of convexity 171
7.6 Functions of several variables 174
7.7 Derivatives of a function .. 177
7.8 Derivatives of convex functions 180
7.9 Differentiability of convex functions 188
7.10 Sequences of convex functions 192
Contents

12 Further Properties of Additive Functions and Convex Functions

- 12.1 Graphs .. 305
- 12.2 Additive functions 308
- 12.3 Convex functions 313
- 12.4 Big graph 316
- 12.5 Invertible additive functions 322
- 12.6 Level sets 327
- 12.7 Partitions 330
- 12.8 Monotonicity 335

Part III Related Topics

13 Related Equations

- 13.1 The remaining Cauchy equations 343
- 13.2 Jensen equation 351
- 13.3 Pexider equations 355
- 13.4 Multiadditive functions 363
- 13.5 Cauchy equation on an interval 367
- 13.6 The restricted Cauchy equation 369
- 13.7 Hosszú equation 374
- 13.8 Mikusiński equation 376
- 13.9 An alternative equation 380
- 13.10 The general linear equation 382

14 Derivations and Automorphisms

- 14.1 Derivations 391
- 14.2 Extensions of derivations 394
- 14.3 Relations between additive functions 399
- 14.4 Automorphisms of \mathbb{R} 402
- 14.5 Automorphisms of \mathbb{C} 403
- 14.6 Non-trivial endomorphisms of \mathbb{C} 406

15 Convex Functions of Higher Orders

- 15.1 The difference operator 415
- 15.2 Divided differences 421
- 15.3 Convex functions of higher order 429
- 15.4 Local boundedness of p-convex functions 432
- 15.5 Operation H 435
- 15.6 Continuous p-convex functions 439
- 15.7 Continuous p-convex functions. Case $N = 1$ 442
- 15.8 Differentiability of p-convex functions 444
- 15.9 Polynomial functions 446
Contents

16 Subadditive Functions
- 16.1 General properties 455
- 16.2 Boundedness. Continuity 458
- 16.3 Differentiability 465
- 16.4 Sublinear functions 471
- 16.5 Norm .. 473
- 16.6 Infinitary subadditive functions 475

17 Nearly Additive Functions and Nearly Convex Functions
- 17.1 Approximately additive functions 483
- 17.2 Approximately multiadditive functions 485
- 17.3 Functions with bounded differences 486
- 17.4 Approximately convex functions 490
- 17.5 Set ideals .. 498
- 17.6 Almost additive functions 505
- 17.7 Almost polynomial functions 510
- 17.8 Almost convex functions 515
- 17.9 Almost subadditive functions 524

18 Extensions of Homomorphisms
- 18.1 Commutative divisible groups 535
- 18.2 The simplest case of S generating X 537
- 18.3 A generalization 540
- 18.4 Further extension theorems 546
- 18.5 Cauchy equation on a cylinder 551
- 18.6 Cauchy nucleus 556
- 18.7 Theorem of Ger 560
- 18.8 Inverse additive functions 564
- 18.9 Concluding remarks 569

Bibliography ... 571

Indices

Index of Symbols ... 587
Subject Index ... 589
Index of Names ... 593
An Introduction to the Theory of Functional Equations and Inequalities
Cauchy's Equation and Jensen's Inequality
Kuczma, M. - Gilányi, A. (Ed.)
2009, XIV, 595 p., Softcover
ISBN: 978-3-7643-8748-8
A product of Birkhäuser Basel