Contents

Preface .. xiii
Introduction .. xiii
Organization .. xiv
Prerequisites .. xv
Bibliography ... xv
Acknowledgements ... xv
About the Author ... xvi

Notation ... xvii
Number sets .. xvii
Classical matrix groups xvii
Vector calculus .. xviii
Function spaces and multi-index notation xix
Combinatorial notation xx

Part I: Symplectic Geometry

1 Symplectic Spaces and Lagrangian Planes
 1.1 Symplectic Vector Spaces 3
 1.1.1 Generalities ... 3
 1.1.2 Symplectic bases 7
 1.1.3 Differential interpretation of σ 9
 1.2 Skew-Orthogonality ... 11
 1.2.1 Isotropic and Lagrangian subspaces 11
 1.2.2 The symplectic Gram–Schmidt theorem 12
 1.3 The Lagrangian Grassmannian 15
 1.3.1 Lagrangian planes 15
 1.3.2 The action of $\text{Sp}(n)$ on $\text{Lag}(n)$ 18
1.4 The Signature of a Triple of Lagrangian Planes 19
1.4.1 First properties .. 20
1.4.2 The cocycle property of τ 23
1.4.3 Topological properties of τ 24

2 The Symplectic Group
2.1 The Standard Symplectic Group 27
2.1.1 Symplectic matrices ... 29
2.1.2 The unitary group U(n) 33
2.1.3 The symplectic algebra 36
2.2 Factorization Results in Sp(n) 38
2.2.1 Polar and Cartan decomposition in Sp(n) 38
2.2.2 The “pre-Iwasawa” factorization 42
2.2.3 Free symplectic matrices 45
2.3 Hamiltonian Mechanics ... 50
2.3.1 Hamiltonian flows ... 51
2.3.2 The variational equation 55
2.3.3 The group Ham(n) .. 58
2.3.4 Hamiltonian periodic orbits 61

3 Multi-Oriented Symplectic Geometry
3.1 Souriau Mapping and Maslov Index 66
3.1.1 The Souriau mapping ... 66
3.1.2 Definition of the Maslov index 70
3.1.3 Properties of the Maslov index 72
3.1.4 The Maslov index on Sp(n) 73
3.2 The Arnol’d–Leray–Maslov Index 74
3.2.1 The problem ... 75
3.2.2 The Maslov bundle .. 79
3.2.3 Explicit construction of the ALM index 80
3.3 q-Symplectic Geometry 84
3.3.1 The identification $\text{Lag}_\infty(n) = \text{Lag}(n) \times \mathbb{Z}$ 85
3.3.2 The universal covering $\text{Sp}_\infty(n)$ 87
3.3.3 The action of $\text{Sp}_q(n)$ on $\text{Lag}_{2\alpha}(n)$ 91

4 Intersection Indices in $\text{Lag}(n)$ and $\text{Sp}(n)$
4.1 Lagrangian Paths ... 95
4.1.1 The strata of $\text{Lag}(n)$ 95
4.1.2 The Lagrangian intersection index 96
4.1.3 Explicit construction of a Lagrangian intersection index 98
4.2 Symplectic Intersection Indices 100
Part II: Heisenberg Group, Weyl Calculus, and Metaplectic Representation

5 Lagrangian Manifolds and Quantization

5.1 Lagrangian Manifolds and Phase 123
5.1.1 Definition and examples .. 124
5.1.2 The phase of a Lagrangian manifold 125
5.1.3 The local expression of a phase 129

5.2 Hamiltonian Motions and Phase 130
5.2.1 The Poincaré–Cartan Invariant 130
5.2.2 Hamilton–Jacobi theory .. 133
5.2.3 The Hamiltonian phase .. 136

5.3 Integrable Systems and Lagrangian Tori 139
5.3.1 Poisson brackets .. 139
5.3.2 Angle-action variables ... 141
5.3.3 Lagrangian tori .. 143

5.4 Quantization of Lagrangian Manifolds 145
5.4.1 The Keller–Maslov quantization conditions 145
5.4.2 The case of q-oriented Lagrangian manifolds 147
5.4.3 Waveforms on a Lagrangian Manifold 149

5.5 Heisenberg–Weyl and Grossmann–Royer Operators 152
5.5.1 Definition of the Heisenberg–Weyl operators 152
5.5.2 First properties of the operators \(\hat{T}(z) \) 154
5.5.3 The Grossmann–Royer operators 156

6 Heisenberg Group and Weyl Operators

6.1 Heisenberg Group and Schrödinger Representation 160
6.1.1 The Heisenberg algebra and group 160
6.1.2 The Schrödinger representation of \(\textbf{H}_n \) 163

6.2 Weyl Operators ... 166
6.2.1 Basic definitions and properties 167
Contents

6.2.2 Relation with ordinary pseudo-differential calculus 170

6.3 Continuity and Composition 174

6.3.1 Continuity properties of Weyl operators 174

6.3.2 Composition of Weyl operators 179

6.3.3 Quantization versus dequantization 183

6.4 The Wigner–Moyal Transform 185

6.4.1 Definition and first properties 186

6.4.2 Wigner transform and probability 189

6.4.3 On the range of the Wigner transform 192

7 The Metaplectic Group

7.1 Definition and Properties of Mp(n) 196

7.1.1 Quadratic Fourier transforms 196

7.1.2 The projection $\pi^{Mp}: Mp(n) \rightarrow Sp(n)$ 199

7.1.3 Metaplectic covariance of Weyl calculus 204

7.2 The Metaplectic Algebra 208

7.2.1 Quadratic Hamiltonians 208

7.2.2 The Schrödinger equation 209

7.2.3 The action of $Mp(n)$ on Gaussians: dynamical approach 212

7.3 Maslov Indices on Mp(n) 214

7.3.1 The Maslov index $\hat{\mu}(\hat{S})$ 215

7.3.2 The Maslov indices $\hat{\mu}_\ell(\hat{S})$ 220

7.4 The Weyl Symbol of a Metaplectic Operator 222

7.4.1 The operators $\hat{R}_\nu(S)$ 223

7.4.2 Relation with the Conley–Zehnder index 227

Part III: Quantum Mechanics in Phase Space

8 The Uncertainty Principle

8.1 States and Observables 238

8.1.1 Classical mechanics 238

8.1.2 Quantum mechanics 239

8.2 The Quantum Mechanical Covariance Matrix 239

8.2.1 Covariance matrices 240

8.2.2 The uncertainty principle 240

8.3 Symplectic Spectrum and Williamson’s Theorem 244

8.3.1 Williamson normal form 244

8.3.2 The symplectic spectrum 246

8.3.3 The notion of symplectic capacity 248
Symplectic Geometry and Quantum Mechanics
de Gosson, M.A.
2006, XX, 368 p., Hardcover
ISBN: 978-3-7643-7574-4
A product of Birkhäuser Basel