Contents

Preface to the Third Edition ... v
Preface to the Second Edition vii
Preface to the First Edition .. ix
List of Special Symbols ... xviii

I Modeling and Data Analysis

1 Parametric Modeling ... 3
1.1 Applications of Extreme Value Analysis 3
1.2 Observing Exceedances and Maxima 7
1.3 Modeling by Extreme Value Distributions 14
1.4 Modeling by Generalized Pareto Distributions 23
1.5 Heavy and Fat–Tailed Distributions 30
1.6 Quantiles, Transformations and Simulations 35

2 Diagnostic Tools ... 39
2.1 Visualization of Data ... 39
2.2 Excess and Hazard Functions 49
2.3 Fitting Parametric Distributions to Data 56
2.4 Q–Q and P–P Plots .. 61
2.5 Trends, Seasonality and Autocorrelation 64
2.6 The Tail Dependence Parameter 74
2.7 Clustering of Exceedances 76

II Statistical Inference in Parametric Models

3 An Introduction to Parametric Inference 83
3.1 Estimation in Exponential and Gaussian Models 84
3.2 Confidence Intervals ... 90
3.3 Test Procedures and p–Values 93
3.4 Inference in Poisson and Mixed Poisson Models 96
3.5 The Bayesian Estimation Principle 102

4 Extreme Value Models ... 107
4.1 Estimation in Extreme Value Models 107
4.2 Testing within Extreme Value Models 118
4.3 Extended Extreme Value Models and Related Models 120

5 Generalized Pareto Models 127
5.1 Estimation in Generalized Pareto Models 127
5.2 Testing Within Generalized Pareto Models 143
5.3 Testing Extreme Value Conditions with Applications
(co-authored by J. Hüsler and D. Li) 144
5.4 Statistics in Poisson-GP Models 152
5.5 The Log-Pareto Model and Other Pareto-Extensions 154

6 Advanced Statistical Analysis 159
6.1 Non-Random and Random Censoring 159
6.2 Models of Time Series, the Extremal Index 164
6.3 Statistics for Student Distributions 170
6.4 Statistics for Sum-Stable Distributions
(co-authored by J.P. Nolan) .. 172
6.5 Ultimate and Penultimate GP Approximation
(co-authored by E. Kaufmann) 182
6.6 An Overview of Reduced-Bias Estimation
(co-authored by M.I. Gomes) 190

7 Statistics of Dependent Variables
(coauthored by H. Drees) ... 207
7.1 The Impact of Serial Dependence 208
7.2 Estimating the Extreme Value Index 209
7.3 Extreme Quantile Estimation 215
7.4 A Time Series Approach .. 219

8 Conditional Extremal Analysis 227
8.1 Interpretations and Technical Preparations 227
8.2 Conditional Extremes: a Nonparametric Approach 238
8.3 Maxima Under Covariate Information 240
8.4 The Bayesian Estimation Principle, Revisited 242

9 Statistical Models for Exceedance Processes 247
9.1 Modeling Exceedances by Poisson Processes:
the Homogeneous Case ... 247
9.2 Mean and Median T-Year Return Levels 250
9.3 ML and Bayesian Estimation in Models of Poisson Processes
... 252
9.4 GP Process Approximations (co-authored by E. Kaufmann). . 256
15 Environmental Sciences
 (co–authored by R.W. Katz) 353
 15.1 Environmental Extremes 353
 15.2 Inclusion of Covariates .. 356
 15.3 Example of Trend ... 359
 15.4 Example of Cycle ... 361
 15.5 Example of Covariate ... 364
 15.6 Numerical Methods and Software 367

V Topics in Finance and Insurance 369

16 Extreme Returns in Asset Prices
 (co–authored by C.G. de Vries and S. Caserta) 371
 16.1 Stylized Facts and Historical Remarks 372
 16.2 Empirical Evidence in Returns Series 375
 16.3 Parametric Estimation of the Tails of Returns 378
 16.4 The Profit/Loss Variable and Risk Parameters 382
 16.5 Evaluating the Value-at-Risk (VaR) 386
 16.6 The VaR for a Single Derivative Contract 392
 16.7 GARCH and Stochastic Volatility Structures 395
 16.8 Predicting the Serial Conditional VaR
 (co–authored by A. Kozek and C.S. Wehn) 401

17 The Impact of Large Claims on Actuarial Decisions
 (co–authored by M. Radtke) 411
 17.1 Numbers of Claims and the Total Claim Amount 412
 17.2 Estimation of the Net Premium 415
 17.3 Segmentation According to the Probable Maximum Loss ... 419
 17.4 The Risk Process and the T–Year Initial Reserve 426
 17.5 Elements of Ruin Theory 432
 17.6 Credibility (Bayesian) Estimation of the Net Premium 434

VI Topics in Material and Life Sciences 439

18 Material Sciences 441
 18.1 Extremal Corrosion Engineering 441
 18.2 Stereology of Extremes (co–authored by E. Kaufmann) 445

19 Life Science
 (co–authored by E. Kaufmann) 453
 19.1 About the Longevity of Humans 453
19.2 Extrapolating Life Tables To Extreme Life Spans:
A Regression Approach 458

Appendix: First Steps towards
Xtremes and StatPascal 465

A The Menu System 467
A.1 Installation .. 467
A.2 Overview and the Hierarchy 467
A.3 Becoming Acquainted with the Menu System 470
A.4 Technical Aspects of Xtremes 476
A.5 The UserFormula (UFO) Facilities 481

B The StatPascal Programming Language 485
B.1 Programming with StatPascal: First Steps 486
B.2 Plotting Curves 490
B.3 Generating and Accessing Data 492

Author Index 495
Subject Index 501
Bibliography 509
Statistical Analysis of Extreme Values
with Applications to Insurance, Finance, Hydrology and
Other Fields
Reiss, R.-D.; Thomas, M.
2007, XVIII, 511 p., Softcover
ISBN: 978-3-7643-7230-9
A product of Birkhäuser Basel