Preface

This book’s title subject, The Topos of Music, has been chosen to communicate a double message: First, the Greek word “topos” (τόπος = location, site) alludes to the logical and transcendental location of the concept of music in the sense of Aristotle’s [20, 592] and Kant’s [258, p. 324] topics. This view deals with the question of where music is situated as a concept—and hence with the underlying ontological problem: What is the type of being and existence of music? The second message is a more technical understanding insofar as the system of musical signs can be associated with the mathematical theory of topoi, which realizes a powerful synthesis of geometric and logical theories. It laid the foundation of a thorough geometrization of logic and has been successful in central issues of algebraic geometry (Grothendieck, Deligne), independence proofs and intuitionistic logic (Cohen, Lawvere, Kripke).

But this second message is intimately entwined with the first since the present concept framework of the musical sign system is technically based on topos theory, so the topos of music receives its topos-theoretic foundation. In this perspective, the double message of the book’s title in fact condenses to a unified intention: to unite philosophical insight with mathematical explicitness.

According to Birkhäuser’s initial plan in 1996, this book was first conceived as an English translation of my former book Geometrie der Töne [310], since the German original had suffered from its restricted access to the international public. However, the scientific progress since 1989, when it was written, has been considerable in theory and technology. We have known new subjects, such as the denotator concept framework, performance theory, and new software platforms for composition, analysis, and performance, such as RUBATO® or OpenMusic. Modeling concepts via the denotator approach in fact results from an intense collaboration of mathematicians and computer scientists in the object-oriented programming paradigm and supported by several international research grants.
Also, the scientific acceptance of mathematical music theory has grown since its beginnings in the late 1970s. As the first acceptance of mathematical music theory was testified to by von Karajan's legendary Oester Symposium "Musik und Mathematik" in 1984 in Salzburg [190], so is the significantly improved present status of acceptance testified to by the Fourth Diderot Forum on Mathematics and Music [365] in Paris, Vienna, and Lisbon 1999, which was organized by the European Mathematical Society. The corresponding extension of collaborative efforts in particular entail the inclusion of works by other research groups in this book, such as the "American Set Theory", the Swedish school of performance research at Stockholm's KTH, or the research on computer-aided composition at the IRCAM in Paris.

Therefore, as a result of these revised conditions, The Topos of Music appears as a vastly extended English update of the original work. The extension is visibly traced in the following parts which are new with respect to [340]: Part II exposes the theory of denotators and forms, part V introduces the topological theories of rhythms and motives, part VIII introduces the structure theory of performance, part IX deals with the expressive semantics of performance in the language of performance operators and stemmata (genealogical trees of successively refined performance), part X is devoted to the description of the RUBATO® software platform for representation, analysis, composition, and performance, part XI presents a statistical analysis of musical analysis, part XII concludes the subject of performance with an inverse performance theory, in fact a first formalization of the problem of music criticism.

This does however not mean that the other parts are just translations of the German text. Considerable progress has been made in all fields, except the last part XIV which reproduces the status quo in [340]. In particular, the local and global theories have been thoroughly functorialized and thereby introduce an ontological depth and variability of concepts, techniques, and results, which by far transcend the semiotically naive geometric approach in [340]. The present theory is as different from the traditional geometric conceptualization as is Grothendieck's topos theoretic algebraic geometry from classical algebraic geometry in the spirit of Segre, van der Waerden, or Zariski.

Beyond this topos-theoretic generalization, the denotator language also introduces a fairly exceptional technique of circular concept constructions. This more precisely is rooted in Finsler's pioneering work in foundations of set theory [153], a thread which has been rediscovered in modern theoretical computer sciences [4]. The present state of denotator theory rightly could be termed a Galois theory of concepts in the sense that circular definitions of concepts play the role of conceptual equations (corresponding to algebraic equations in algebraic Galois theory), the solutions of which are concepts instead of algebraic numbers.

Accordingly, the mathematical apparatus has been vastly extended, not only in the field of topos theory and its intuitionistic logic, but also with regard to general and algebraic topology, ordinary and partial differential equations, Pólya theory, statistics, multiaffine algebra and functorial algebraic geometry. It is mandatory that these technicalities had to be placed in a more elaborate semiotic perspective. However, this book does not cover the full range of music semiotics, for which the reader is referred to [361]. Of course, such an extension on the technical level has consequences for the readability of the theory. In view of the present volume of over 1300 pages, we could however not even make the attempt to approach a non-technical presentation. This subject is left to subsequent efforts. The critical reader may put the question whether music is really that complex. The answer is yes, and the reason is straightforward. We cannot pretend that Bach, Haydn, Mozart, or Beethoven, just to name some of the most prominent
composition, are outstanding geniuses and have elaborated masterworks of eternal value, without
trying to understand such singular creations with adequate tools, and this means: of adequate
depth and power. After all, understanding God's 'composition', the material universe, cannot
be approached without the most sophisticated tools as they have been elaborated in physics,
chemistry, and molecular biology.

So who is recommended to read this book? A first category of readers is evidently the
working scientist in the fields of mathematical music theory, the soft- and hardware engineer in
music informatics, but also the mathematician who is interested in new applications from the
above fields of pure mathematics. A second category are those theoretical mathematicians or
computer scientists interested in the Galois theory of concepts; they may discover interesting
unsolved problems. A third category of potential readers are all those who really want to get an
idea of what music is about, of how one may conceptualize and turn into language the "ineffable"
in music for the common language. Those who insist on the dogma that precision and beauty
contradict each other, and that mathematics only produces tautologies and therefore must fail
when aiming at substantial knowledge, should not read such a book.

Despite the technical character of *The Topos of Music*, there are at least four different
approaches to its reading. To begin with, one may read it as a philosophical text, concentrating
on the qualitative passages, surfing over technical portions and leaving those paragraphs to
others. One may also take the book as a dictionary for computational musicology, including its
concept framework and the lists of musical objects and processes (such as modulation degrees,
contrapuntal steps) in the appendices. Observe however, that not all existing important lists
have been included. For example, the list of all-interval series and the list of self-addressed
chords are omitted, the reader may find these lists in other publications. Thirdly, the working
scientist will have to read the full-fledged technicalities. And last, but not least, one may take
the book as a source for ideas of how to go on with the whole subject of music. The GPL
(General Public License) software sources in the appended CD-ROM may support further
development.

The prerequisites to a more in-depth reading of this book are these. Generally speaking,
a good acquaintance with formal reasoning as mathematics (including formal logic) preconizes,
is a conditio sine qua non. As to musicology and music theory, the familiarity with elementary
concepts, like chords, motives, rhythm, and also musical notation, as well as a real interest in
understanding music and not simply (ab)using it, are recommended. For the more computer-
oriented passages, familiarity with the paradigm of object oriented programming is profitable.
We have not included the appendix on mathematical basics because it should help the reader
get familiar with mathematics, but as an orientation in fields where the specialized mathematician
possibly needs a specification of concepts and notation. The appendix was also included
to expose the spectrum of mathematics which is needed to tackle the formal problems of
computational musicology. It is by no means an overkill of mathematization: We have even omitted
some non-trivial fields, such as statistics or Lambda calculus, for which we have to apologize.

There are different supporting instances to facilitate orientation in this book. To begin
with, the table of contents and an extensive subject and name index may help find one's key-
words. Further, following the list of contents, a leitfaden (on page **XXIX**) is included for a generic
navigation. Each chapter and section is headed by a summary that offers a first orientation

A legal matter file is contained in the book's CD-ROM, see page ***.
about specific contents. Finally, the book is also available as a file *ToposOrMusic.pdf* with bookmarks and active cross-references in the appended CD-ROM (see page xxx for its contents). This version is also attractive because the figures' colors are visible only in this version.

In order to obtain a consistent first reading, we recommend chapters 1 to 5, and then appendix A: Common Parameter Spaces (appendix B is not mandatory here, though it gives a good and not so technical overview of auditory physiology). After that, the reader may go on with chapter 6 on denotators and then follow the outline of the leitfaden (see page xxix).

This book could not have been realized without the engaged support of nineteen collaborators and contributors. Above all, my PhD students Stefan Göller and Stefan Müller at the MultiMedia Laboratory of the Department of Information Technology at the University of Zurich have collaborated in the production of this book on the levels of the \LaTeX{} installation, the final production of hundreds of figures, and the contributions sections 20.2 through 20.5 (Göller) and sections 46.3 through 46.3.6.2 (Müller). My special gratitude goes to their truly collaborative spirit.

Contributions to this book have been delivered by (in alphabetic order): By Carlos Agon, and Gérard Assayag (both IRCAM) with their precious Lambda-calculus-oriented presentation of the object-oriented programming principles in the composition software OpenMusic described in chapter 51, Moreno Andreatta (IRCAM) with an elucidating discourse on the American Set Theory in section 11.5.2 and section 16.3, Jan Beran (Universität Konstanz) with his contribution to the compositional strategies in his original composition [19] in section 11.5.1.1, as well as with his inspiring work on statistics as reported in chapters 43 and 44, Chantal Buteau (Universität und ETH Zürich) with her detailed review of chapter 22, Roberto Ferretti (ETH Zürich) with his progressive contributions to the algebraic geometry of inverse performance theory in sections 39.8 and 46.2, Anja Fleischer (Technische Universität Berlin) with her short but critical preliminaries in chapter 23, Harald Friptinger (Universität Graz) with his "killer" formulas concerning enumeration of finite local and global compositions in sections 11.4, 16.2.2 and appendix C.3.6, Jörg Garbers (Technische Universität Berlin) with his portation of the RUBATO® application to Mac OS X, as documented in the screenshots in chapters 40, 41, Werner Hemmert (Infinion) with a very up-to-date presentation of room acoustics in section A.1.1.1 and auditory physiology in appendix B.1 (we would have loved to include more of his knowledge), Michael Leyton (DIMACS, Rutgers University) with a formidable cover figure entitled "Dark Theory", a beautiful subtitle to this book, as well as with innumerable discussions around time and its reduction to symmetries as presented in chapter 47, Emilio Lluís Puebla (UNAM, Mexico City) with his unique and engaged promotion and dissipation of mathematical music theory on the American continent, especially also in the preparation and critical review of this book, Mariana Montiel Hernandez (UNAM, Mexico City) with her critical review of the theory of circular forms and denotators in section 6.5 and appendix G.2.2.1, Thomas Noll (Technische Universität Berlin) with his substantial contributions to the functorial theory of compositions, and for his revolutionary rebuilding of Riemann's harmony and its relations to counterpoint, Joachim Stange-Elbe (Universität Osnabrück) with a very clear and innovative description of his outstanding RUBATO® performance of Bach's contrapunctus III in the *Art of Fugue* in sections 42.2 through 42.4.3, Hans Straub with his adventurous extensions of classical cadence theory in section 26.2.2 and his classification of four-element motives in appendix M.4, and, last but not least, Oliver Zahorska (Out Media Design), my former collaborator and chief programmer of the NeXT RUBATO® application, which has contributed so much to the
success of the Zürich school of performance theory. To all of them, I owe my deepest gratitude and recognition for their sweat and tears.

My sincere acknowledgments go to Alexander Grothendieck, whose encouraging letters and, no doubt, awe inspiring revolution in mathematical thinking has given me so much in isolated phases of this enterprise. My acknowledgments also go to my engaged mentor Peter Stucki, director of the MultiMedia Laboratory of the Department of Information Technology at the University of Zurich; without his support, this book would have seen its birthday years later, if ever. My thanks also go to my brother Silvio, who once again (he did it already for my first book [328]) supported the final review efforts by an ideal environment in his villa in Vulpera. My thanks also go to the unbureaucratic management of the book’s production by Birkhäuser’s lector Thomas Hempfling and the very patient copy editor Edwin Beschler. All these beautiful supports would have failed without my wife Christina’s infinite understanding and vital environment—if this book is a trace of humanity, it is also, and strongly, hers.

Vulpera, June 2002

Guerino Mazzola
The Topos of Music
Geometric Logic of Concepts, Theory, and Performance
Mazzola, G.
2002, XCVI, 1344 p. In 3 volumes, not available separately., Hardcover
ISBN: 978-3-7643-5731-3
A product of Birkhäuser Basel