Contents

Preface xi

Introduction 1

1 Surface evolution equations 15
1.1 Representation of a hypersurface 15
1.2 Normal velocity 18
1.3 Curvatures 21
1.4 Expression of curvature tensors 26
1.5 Examples of surface evolution equations 33
1.5.1 General evolutions of isothermal interfaces 33
1.5.2 Evolution by principal curvatures 34
1.5.3 Other examples 35
1.5.4 Boundary conditions 35
1.6 Level set equations 36
1.6.1 Examples 36
1.6.2 General scaling invariance 40
1.6.3 Ellipticity 42
1.6.4 Geometric equations 46
1.6.5 Singularities in level set equations 49
1.7 Exact solutions 52
1.7.1 Mean curvature flow equation 52
1.7.2 Anisotropic version 54
1.7.3 Anisotropic mean curvature of the Wulff shape 58
1.7.4 Affine curvature flow equation 62
1.8 Notes and comments 63

2 Viscosity solutions 69
2.1 Definitions and main expected properties 69
2.1.1 Definition for arbitrary functions 70
2.1.2 Expected properties of solutions 73
2.1.3 Very singular equations 77
Contents

2.2 Stability results 82
 2.2.1 Remarks on a class of test functions 83
 2.2.2 Convergence of maximum points 85
 2.2.3 Applications 87
2.3 Boundary value problems 92
2.4 Perron's method 98
 2.4.1 Closedness under supremum 100
 2.4.2 Maximal subsolution 101
 2.4.3 Adaptation for very singular equations 103
 2.4.4 Applicability 105
2.5 Notes and comments 105

3 Comparison principle 109
 3.1 Typical statements 109
 3.1.1 Bounded domains 110
 3.1.2 General domains 112
 3.1.3 Applicability 112
 3.2 Alternate definition of viscosity solutions ... 113
 3.2.1 Definition involving semijets 113
 3.2.2 Solutions on semiclosed time intervals ... 119
 3.3 General idea for the proof of comparison principles ... 123
 3.3.1 A typical problem 123
 3.3.2 Maximum principle for semicontinuous functions ... 126
 3.4 Proof of comparison principles for parabolic equations ... 128
 3.4.1 Proof for bounded domains 129
 3.4.2 Proof for unbounded domains 134
 3.5 Lipschitz preserving and convexity preserving properties ... 139
 3.6 Spatially inhomogeneous equations 148
 3.6.1 Inhomogeneity in first order perturbation ... 148
 3.6.2 Inhomogeneity in higher order terms 150
 3.7 Boundary value problems 155
 3.8 Notes and comments 158

4 Classical level set method 163
 4.1 Brief sketch of a level set method 163
 4.2 Uniqueness of bounded evolutions 166
 4.2.1 Invariance under change of dependent variables 166
 4.2.2 Orientation-free surface evolution equations 171
 4.2.3 Uniqueness 172
 4.2.4 Unbounded evolutions 174
 4.3 Existence by Perron's method 175
 4.4 Existence by approximation 180
 4.5 Various properties of evolutions 182
 4.6 Convergence properties for level set equations ... 192