Contents

1 Introduction to Symmetry and Regularity

1.1 Symmetric Structures .. 1
 1.1.1 Definition of Symmetry 1
 1.1.2 History of the Developments of Symmetry in Structural Engineering .. 3
1.2 Regular Structures 5
 1.2.1 Repetitive and Cyclic Structures 5
 1.2.2 Definition of Regularity 6
1.3 Examples of Symmetric and Regular Structural Models 7
1.4 Optimal Analysis of Structures 10
References .. 11

2 Introduction to Graph Theory and Algebraic Graph Theory

2.1 Introduction ... 15
2.2 Basic Concepts and Definitions of Graph Theory 16
 2.2.1 Definition of a Graph 16
 2.2.2 Adjacency and Incidence 17
 2.2.3 Graph Operations 17
 2.2.4 Walks, Trails and Paths 18
 2.2.5 Cycles and Cutsets 19
 2.2.6 Trees, Spanning Trees and Shortest Route Trees 19
 2.2.7 Directed Graphs 20
 2.2.8 Different Types of Graphs 21
2.3 Vector Spaces Associated with a Graph 22
 2.3.1 Cycle Space 22
 2.3.2 Cutset Space 23
 2.3.3 Cycle Bases Matrices 23
 2.3.4 Cutset Bases Matrices 24
2.4 Graphs Associated with Matrices 24
2.5 Planar Graphs: Euler’s Polyhedron Formula 25
2.5.1 Planar Graphs ... 26
2.6 Definitions from Algebraic Graph Theory 27
2.6.1 Incidence, Adjacency and Laplacian Matrices
of a Graph ... 27
2.6.2 Incidence and Adjacency Matrices of a Directed Graph ... 28
2.6.3 Adjacency and Laplacian Matrices
of a Weighted Graph .. 29
2.6.4 Eigenvalues and Eigenvectors of an Adjacency Matrix ... 30
2.6.5 Eigenvalues and Eigenvectors of a Laplacian Matrix 31
2.6.6 Additional Properties of a Laplacian Matrix 31
2.7 Matrix Representation of a Graph in Computer 32
2.8 Historical Problem of Graph Theory 34
References ... 35

3 Graph Products and Configuration Processing 37
3.1 Introduction ... 37
3.2 Definitions of Different Graph Products 38
3.2.1 Boolean Operation on Graphs 38
3.2.2 Cartesian Product of Two Graphs 38
3.2.3 Strong Cartesian Product of Two Graphs 40
3.2.4 Direct Product of Two Graphs 41
3.2.5 Lexicographic Product of Two Graphs 43
3.3 Directed Graph Products 45
3.3.1 Type I Directed Graph Products 46
3.3.2 Type II Directed Graph Products 47
3.3.3 Type III Directed Graph Products 48
3.3.4 Type IV Directed Graph Products 49
3.4 Weighted Triangular and Circular Graph Products for
Configuration Processing ... 50
3.4.1 Extension of Classic Graph Products 50
3.4.2 Formulation of Weighted Strong Cartesian Product 51
3.4.3 Formulation of Weighted Direct New Product 52
3.4.4 Weighted Cartesian Direct Graph Products 52
3.5 Definition of Weighted Triangular Graph Products 53
3.5.1 Weights Assigned to Nodes of the Generators and Product
Graphs .. 54
3.5.2 Weighted Triangular Strong Cartesian Graph Product 55
3.5.3 Weighted Triangular Semistrong Cartesian Graph Product . 55
3.6 Definition of a Weighted Circular Graph Product 56
3.6.1 Weighted Circular Cartesian Graph Products 57
3.6.2 Weighted Circular Strong Cartesian Graph Product 57
3.6.3 Weighted Circular Direct Graph Product 58
3.6.4 Weighted Circular Cartesian Direct Graph Product 60
3.7 Weighted Cut-Out in Graph Products ... 60
 3.7.1 Weighted Cut-Outs in Cartesian Graph Product Models 61
 3.7.2 Weighted Cut-Out Cartesian Direct Graph Product 61
 3.7.3 Weighted Cut-Out Strong Cartesian Graph Product 62
 3.7.4 Weighted Cut-Out Semistrong Cartesian Graph Product 62

3.8 Covered Graph Products ... 63
 3.8.1 Covered Cut-Out Cartesian Graph Product 64
 3.8.2 Covered Cut-Out Strong Cartesian Graph Product 65
 3.8.3 Weighted Covered Cut-Out Strong Cartesian Graph Product 66
 3.8.4 Weighted Covered Cut-Out Semistrong Cartesian Graph Product 66

References ... 67

4 Canonical Forms, Basic Definitions and Properties 69
 4.1 Introduction ... 69
 4.2 Decomposition of Matrices to Special Forms 69
 4.2.1 Canonical Form I .. 70
 4.2.2 Canonical Form II .. 70
 4.2.3 Canonical Form III .. 72
 4.2.4 Transformation of Form III into Form II 74
 4.2.5 Form IV Symmetry .. 76
 4.2.6 Method for the Formation of e_1 and e_2 Matrices 78
 4.3 Generalization of Form IV to Higher-Order Matrices 81
 4.4 Special Pattern Form IV Matrices ... 83
 4.5 Eig[M] Operator .. 85
 4.6 Laplacian Matrices for Different Forms ... 86
 4.6.1 Symmetry and Laplacian of Graphs .. 86
 4.6.2 Factorisation of Symmetric Graphs .. 88
 4.6.3 Form III as an Augmented Form II .. 92
 4.6.4 Mixed Models .. 96
 4.7 Graph Representation of Form IV Symmetry 97
 4.7.1 Graph Representation .. 97
 4.7.2 Examples .. 98
 4.8 Generalised Form III Matrix ... 101
 4.9 Block Diagonalization of Compound Matrices 102
 4.10 Matrices as the Sum of Three Kronecker Products 107
 4.11 The Commutating Condition ... 108
 4.12 A Block Tri-diagonal Matrix with Corner Blocks and Its Block
 Diagonalisation .. 109

References ... 113
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Canonical Forms for Combinatorial Optimisation, Nodal Ordering and</td>
<td>5.1 Introduction</td>
<td>115</td>
</tr>
<tr>
<td>Graph Partitioning</td>
<td>5.2 Preliminary Definitions</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>5.3 Algebraic Graph Theory for Ordering and Partitioning</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>5.4 Eigenvalue Problems and Similarity Transformation</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>5.5 A Special Canonical Form and Its Block Diagonalisation</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>5.6 Adjacency and Laplacian Matrices for Models of Different Topologies</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>5.6.1 Configuration of Type 1</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>5.6.2 Configurations of Type 2, Type 3 and Type 4</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>5.7 Examples from Structural Models</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>128</td>
</tr>
<tr>
<td>6 Graph Products for Ordering and Domain Decomposition</td>
<td>6.1 Introduction</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>6.2 Graph Models of Finite Element Meshes</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>6.3 Eigenvalues of Graph Matrices for Cartesian Product</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>6.3.1 Properties of Kronecker Product</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>6.3.2 Theorem</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>6.3.3 Eigenvalues of Graph Matrices for Cycle and Path Graphs</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>6.3.4 Example</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>6.4 Spectral Method for Bisection</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>6.4.1 Computing λ_2 for Laplacian of Regular Models</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>6.4.2 Algorithm</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>6.5 Numerical Results</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>6.6 Spectral Method for Nodal Ordering</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>6.7 Spectral Method for Different Product Graphs: An Approximate Method</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>6.7.1 Main Theorem</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>6.7.2 Eigensolution in Cartesian Product of Two Graphs</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>6.7.3 Eigensolution in Direct Product of Two Graphs</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>6.7.4 Eigensolution in Strong Cartesian Product of Two Graphs</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>6.7.5 Examples</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>6.8 Numerical Examples</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>151</td>
</tr>
<tr>
<td>7 Canonical Forms Applied to Structural Mechanics</td>
<td>7.1 Introduction</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>7.2 Vibrating Cores for a Mass–Spring Vibrating System</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>7.2.1 The Graph Model of a Mass–Spring System</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>7.2.2 Vibrating Systems with Form II Symmetry</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>7.2.3 Vibrating Systems with Form III Symmetry</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>7.2.4 Generalized Form III and Vibrating System</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>7.2.5 Discussion</td>
<td>165</td>
</tr>
</tbody>
</table>
7.3 Buckling Load of Symmetric Frames 165
 7.3.1 Buckling Load for Symmetric Frames with Odd Number of Spans per Storey 165
 7.3.2 Buckling Load for Symmetric Frames with an Even Number of Spans per Storey 175
 7.3.3 Discussion 181
7.4 Eigenfrequencies of Symmetric Planar Frame 182
 7.4.1 Eigenfrequencies of Planar Symmetric Frames with Odd Number of Spans 182
 7.4.2 Decomposition of Symmetric Planar Frames with Even Number of Spans 190
 7.4.3 Discussion 194
7.5 Eigenfrequencies of Symmetric Planar Trusses via Weighted Graph Symmetry and New Canonical Forms 195
 7.5.1 Modified Symmetry Forms 195
 7.5.2 Numerical Results 200
 7.5.3 Discussion 216
7.6 General Canonical Forms for Analytical Solution of Problems in Structural Mechanics 217
 7.6.1 Definitions 217
 7.6.2 Decomposition of a Tri-diagonal Matrix 218
 7.6.3 A New Form for Efficient Solution of Eigenproblem 221
 7.6.4 Canonical Penta-diagonal Form 226
7.7 Numerical Examples for the Matrices as the Sum of Three Kronecker Products 230
7.8 Symmetric Finite Element Formulation Using Canonical Forms: Truss and Frame Elements 236
 7.8.1 Sign Convention 236
 7.8.2 Truss Element 237
 7.8.3 Beam Element 243
 7.8.4 Discussion 248
7.9 Eigensolution of Rotationally Repetitive Space Structures 249
 7.9.1 Basic Formulation of the Used Stiffness Matrix 249
 7.9.2 A Canonical Form Associated with Rotationally Repetitive Structures 251
 7.9.3 Eigensolution for Finding Buckling Load of Structure with the BTMCB Form 252
 7.9.4 Eigensolution for Free Vibration of Structural Systems with the BTMCB Form 255
 7.9.5 Reducing Computational Efforts by Substructuring the System 256
 7.9.6 Numerical Examples 258
 7.9.7 Concluding Remarks 262
References .. 263
8 Graph Products Applied to the Analysis of Regular Structures

8.1 Introduction 265
8.2 Analysis of Repetitive Structures 266
8.2.1 Eigenvectors for Sum of the Kronecker Products 266
8.2.2 Solution of Linear Equations via Eigenvalues and Eigenvectors 268
8.2.3 Kronecker Product of a Path and a Cycle 269
8.2.4 An Illustrative Example 271
8.2.5 Algorithm for the Analysis 273
8.2.6 Numerical Examples 274
8.3 Static and Modal Analyses of Structures with Different Repeated Patterns .. 281
8.3.1 Static Analysis of Structures with Repeated Patterns .. 282
8.4 Free Vibration Analysis of Irregular Structure Comprising of Regular Parts 287
8.4.1 Illustrative Examples 288
8.4.2 Discussion 297
8.5 Block Circulant Matrices and Applications in Free Vibration Analysis of Cyclically Repetitive Structures 299
8.5.1 Some Basic Definitions and Concepts of Block Circulant Matrices 299
8.5.2 Some Properties of Permutation Matrices 300
8.5.3 Some Properties of Block Circulant Matrices 302
8.5.4 The Complete Study of a Simple Example 305
8.6 Complementary Examples 307
References .. 313

9 Graph Products Applied to the Locally Modified Regular Structures Using Direct Methods 315
9.1 Introduction 315
9.2 Analysis of Non-regular Graphs Using the Results of Regular Models via an Iterative Method 315
9.2.1 Main Method 316
9.2.2 Numerical Examples 319
9.2.3 Discussion 328
9.3 Application of Kronecker Product to the Analysis of Modified Regular Structures 329
9.3.1 Inversion of Block Matrices 329
9.3.2 Proposed Method 331
9.3.3 Numerical Examples 336
9.3.4 Concluding Remarks 338
References .. 339
10 Graph Products Applied to the Regular and Locally Modified Regular Structures Using Iterative Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>341</td>
</tr>
<tr>
<td>10.2 Eigensolution of Symmetric and Regular Structures Using Canonical Forms</td>
<td>341</td>
</tr>
<tr>
<td>10.2.1 Canonical Form II</td>
<td>343</td>
</tr>
<tr>
<td>10.2.2 Canonical Form III</td>
<td>344</td>
</tr>
<tr>
<td>10.2.3 Nested Form II</td>
<td>347</td>
</tr>
<tr>
<td>10.2.4 Nested Form III</td>
<td>348</td>
</tr>
<tr>
<td>10.2.5 Generalised Form II</td>
<td>350</td>
</tr>
<tr>
<td>10.2.6 Block Circulant Form</td>
<td>353</td>
</tr>
<tr>
<td>10.2.7 Augmented Block Circulant (ABC) Form</td>
<td>359</td>
</tr>
<tr>
<td>10.3 Eigensolution of Locally Modified Regular Structures Using Iterative Methods</td>
<td>363</td>
</tr>
<tr>
<td>10.3.1 Eigensolution of Locally Modified Regular Structures Using Shifted Inverse Iteration Method</td>
<td>364</td>
</tr>
<tr>
<td>10.3.2 Approximate Eigensolution of Locally Modified Regular Structures Using a Substructuring Technique</td>
<td>373</td>
</tr>
<tr>
<td>10.4 Substructure Representation for Efficient Eigensolution of Regular Structures</td>
<td>385</td>
</tr>
<tr>
<td>10.4.1 Substructure Representation of TRS</td>
<td>387</td>
</tr>
<tr>
<td>10.4.2 Modal Truncation</td>
<td>389</td>
</tr>
<tr>
<td>10.4.3 Reduced Eigenproblem</td>
<td>390</td>
</tr>
<tr>
<td>10.4.4 Evaluation of the Residual Flexibility Matrix</td>
<td>391</td>
</tr>
<tr>
<td>10.4.5 Numerical Experiments</td>
<td>391</td>
</tr>
<tr>
<td>References</td>
<td>398</td>
</tr>
</tbody>
</table>

11 Group Theory and Applications in Structural Mechanics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>401</td>
</tr>
<tr>
<td>11.2 Basic Concepts of Symmetry Groups and Representation Theory</td>
<td>402</td>
</tr>
<tr>
<td>11.2.1 Definition of a Group</td>
<td>402</td>
</tr>
<tr>
<td>11.2.2 Classes of a Group</td>
<td>402</td>
</tr>
<tr>
<td>11.2.3 Symmetry and Symmetry Operations</td>
<td>403</td>
</tr>
<tr>
<td>11.2.4 Symmetry Group</td>
<td>404</td>
</tr>
<tr>
<td>11.2.5 Representation Theory</td>
<td>404</td>
</tr>
<tr>
<td>11.3 Stability Analysis of Hyper Symmetric Skeletal Structures Using Group Theory</td>
<td>408</td>
</tr>
<tr>
<td>11.3.1 A Review of the Present Method Through a Simple Example</td>
<td>408</td>
</tr>
<tr>
<td>11.3.2 More Complicated Forms of Symmetry</td>
<td>415</td>
</tr>
<tr>
<td>11.4 Finding the Factors of a Symmetric Column Element</td>
<td>416</td>
</tr>
<tr>
<td>11.4.1 Hyper Symmetry</td>
<td>418</td>
</tr>
<tr>
<td>11.5 Symmetric Frames Having Numerous Symmetry Operators</td>
<td>418</td>
</tr>
<tr>
<td>11.5.1 Frames with Symmetrical Factors</td>
<td>427</td>
</tr>
<tr>
<td>11.5.2 Discussions</td>
<td>431</td>
</tr>
<tr>
<td>References</td>
<td>432</td>
</tr>
</tbody>
</table>
12 Graph–Group Method for the Analysis of Symmetric-Regular
 Structures .. 433
12.1 Introduction .. 433
12.2 Symmetry Groups of Graph Products 433
12.3 Symmetry Analysis of Product Graphs 437
12.4 Application in Analysis of Prestressed Cable Nets 449
12.5 Discussion ... 458
References .. 458

Index .. 459
Optimal Analysis of Structures by Concepts of Symmetry and Regularity
Kaveh, A.
2013, XVI, 463 p., Hardcover
ISBN: 978-3-7091-1564-0