Contents

1 Definition of Comparative Medicine: History and New Identity
Erika Jensen-Jarolim

2 Smallest Unit of Life: Cell Biology
Isabella Ellinger and Adolf Ellinger

3 Supporting Apparatus of Vertebrates: Skeleton and Bones
Wolfgang Sipos, Ursula Föger-Samwald, and Peter Pietschmann

4 Locomotor Principles: Anatomy and Physiology of Skeletal Muscles
Josef Finsterer

5 Lifeblood Flow: The Circulatory Systems
Claudia Stöllberger

6 Steering and Communication: Nervous System and Sensory Organs
Josef Finsterer, Hanna Schöpper, and Sabine Breit

7 Surface, Barrier, and Interface Zone: Comparative Aspects of the Skin
Lucia Panakova and Krisztina Szalai

8 Body Messaging: The Endocrine Systems
Florian K. Zeugswetter and Erika Jensen-Jarolim

9 Alimentation and Elimination: The Principles of Gastrointestinal Digestion
Georg A. Roth, Hanna Schöpper, and Kirsti Witter

10 Volume and Clearance: Kidneys and Excretory Systems
Erika Jensen-Jarolim, Hanna Schöpper, and Simone Gabner

11 Breathing: Comparative Aspects of the Respiratory System
Hanna Schöpper, Cordula Bartel, and Krisztina Szalai

12 Propagation: Mammalian Reproduction
Christine Aurich and Isabella Ellinger
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Common Concepts of Immune Defense</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Franziska Roth-Walter, Angelika B. Riemer, Erika Jensen-Jarolim, and Hannes Stockinger</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Laboratory Animal Law: An Introduction to Its History and Principles</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>Regina Binder</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Ethics in Laboratory Animal Science</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>Herwig Grimm</td>
<td></td>
</tr>
</tbody>
</table>
List of Figures

<p>| Fig. 1.1 | Armée de terracotta à Xi’an—China. | 5 |
| Fig. 1.2 | Edward Jenner. | 9 |
| Fig. 1.3 | Louis Pasteur, nineteenth-century scientist. | 12 |
| Fig. 2.1 | The different levels of organization in multicellular organisms. | 20 |
| Fig. 2.2 | The classification levels of organisms. | 21 |
| Fig. 2.3 | Principal structures of prokaryotic and eukaryotic cells | 22 |
| Fig. 2.4 | Three different phenotypes out of the 230 specialized human cell types | 23 |
| Fig. 2.5 | Illustration of the steps of cell differentiation | 24 |
| Fig. 2.6 | Comparison of eukaryotic cells, prokaryotic cells and multicellular organisms | 25 |
| Fig. 2.7 | Some major ubiquitously used cellular molecules | 25 |
| Fig. 2.8 | Principal components of the cell membrane | 28 |
| Fig. 3.1 | Micro-computed tomography of bone of Sus scrofa | 36 |
| Fig. 3.2 | Comparison of skeletons. | 39 |
| Fig. 3.3 | The RANK-RANKL-OPG axis is the key regulatory pathway for osteoclastogenesis | 41 |
| Fig. 4.1 | A muscle fibre | 47 |
| Fig. 4.2 | The making of a neuromuscular end plate and a spinal reflex arc | 52 |
| Fig. 4.3 | The three muscle types, and smooth muscle function | 57 |
| Fig. 5.1 | The closed circulatory system in humans, mammals and fish | 63 |
| Fig. 5.2 | Graph summarizing hemolymph circulation | 64 |
| Fig. 5.3 | The pathway of blood flow through the heart, autoptic specimen of a human heart and electrocardiogram (ECG, EKG) | 65 |
| Fig. 6.1 | Brain of a sheep and human. | 74 |
| Fig. 6.2 | Schemes showing cranial nerves, visual projection pathway, and auditory pathway. | 78 |
| Fig. 6.3 | Different types of neurons and electroencephalogram (EEG). | 80 |
| Fig. 6.4 | The sympathetic and parasympathetic nervous system | 81 |
| Fig. 6.5 | The building of eyeball and inner ear of a vertebrate organism | 82 |</p>
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 7.1</td>
<td>The skin differentiates diversely in the species</td>
<td>105</td>
</tr>
<tr>
<td>Fig. 7.2</td>
<td>The building plan of mammalian skin</td>
<td>109</td>
</tr>
<tr>
<td>Fig. 7.3</td>
<td>Examples of appendices of the skin</td>
<td>114</td>
</tr>
<tr>
<td>Fig. 8.1</td>
<td>The endocrine organs</td>
<td>122</td>
</tr>
<tr>
<td>Fig. 8.2</td>
<td>Hormones and hormone actions</td>
<td>126</td>
</tr>
<tr>
<td>Fig. 8.3</td>
<td>The endocrine function of the pancreas</td>
<td>134</td>
</tr>
<tr>
<td>Fig. 9.1</td>
<td>Overview on the digestive systems of a human and a frog</td>
<td>141</td>
</tr>
<tr>
<td>Fig. 9.2</td>
<td>Mammalian teeth specialized to carnivore, vegetable, or mixed food</td>
<td>144</td>
</tr>
<tr>
<td>Fig. 9.3</td>
<td>Human stomach macro- and microanatomy</td>
<td>146</td>
</tr>
<tr>
<td>Fig. 10.1</td>
<td>Kidney anatomy and function</td>
<td>164</td>
</tr>
<tr>
<td>Fig. 10.2</td>
<td>Top view on cast specimen of large uriniferous structures and plastinated kidneys</td>
<td>173</td>
</tr>
<tr>
<td>Fig. 10.3</td>
<td>Macro- and microscopic cross sections of the kidney</td>
<td>174</td>
</tr>
<tr>
<td>Fig. 11.1</td>
<td>Comparative aspects of respiratory systems</td>
<td>186</td>
</tr>
<tr>
<td>Fig. 11.2</td>
<td>Organs of the lower respiratory tract</td>
<td>186</td>
</tr>
<tr>
<td>Fig. 11.3</td>
<td>The structure of lung alveoli and respiratory gas diffusion</td>
<td>192</td>
</tr>
<tr>
<td>Fig. 12.1</td>
<td>Mammalian reproduction and comparison of mitotic and meiotic cell division</td>
<td>197</td>
</tr>
<tr>
<td>Fig. 12.2</td>
<td>Schematic illustration of a cell cycle</td>
<td>198</td>
</tr>
<tr>
<td>Fig. 12.3</td>
<td>Schematic illustration of the human reproductive system</td>
<td>200</td>
</tr>
<tr>
<td>Fig. 12.4</td>
<td>Structure and comparison of the ovaries</td>
<td>201</td>
</tr>
<tr>
<td>Fig. 12.5</td>
<td>Pathologic preparation of the uterus with the ovaries</td>
<td>204</td>
</tr>
<tr>
<td>Fig. 12.6</td>
<td>The ovarian cycle is regulated by endocrine loops</td>
<td>204</td>
</tr>
<tr>
<td>Fig. 12.7</td>
<td>Typical precopulatory behavior in stallions</td>
<td>209</td>
</tr>
<tr>
<td>Fig. 12.8</td>
<td>Major steps during oogenesis/folliculogenesis and spermatogenesis</td>
<td>210</td>
</tr>
<tr>
<td>Fig. 12.9</td>
<td>Major events during early embryonic development</td>
<td>213</td>
</tr>
<tr>
<td>Fig. 13.1</td>
<td>The evolution of immunity</td>
<td>222</td>
</tr>
<tr>
<td>Fig. 13.2</td>
<td>The initial response to a harmful stimulus by acute inflammation in mammals</td>
<td>225</td>
</tr>
<tr>
<td>Fig. 13.3</td>
<td>All cellular blood components derive from hematopoietic stem cells</td>
<td>230</td>
</tr>
<tr>
<td>Fig. 13.4</td>
<td>The architecture of lymphoid tissues in mammalians</td>
<td>245</td>
</tr>
<tr>
<td>Fig. 13.5</td>
<td>Characterization of the principles of adaptive humoral defense: Antibodies</td>
<td>247</td>
</tr>
<tr>
<td>Fig. 13.6</td>
<td>Helper T cell activation and action</td>
<td>249</td>
</tr>
<tr>
<td>Fig. 13.7</td>
<td>Cytotoxic T cell activation and action</td>
<td>250</td>
</tr>
</tbody>
</table>
Table 1.1 Alternative methods for animal experiments identified by the ECVAM (European Centre for the Validation of Alternative Methods) in 1999 3
Table 1.2 Mission statements of international Departments of Comparative Medicine ... 14
Table 4.1 Characteristics of muscle fibre types 48
Table 5.1 Relative heart weight of several species 68
Table 5.2 Resting heart rate in several species 69
Table 5.3 Systolic and diastolic blood pressure in different species 69
Table 8.1 Systematic overview on hormone regulation 121
Table 12.1 Characteristics of the estrous cycle in domestic animal species and the menstrual cycle in humans 202
Table 12.2 Involvement of steroid hormones in the regulation of female reproduction ... 205
Table 12.3 Involvement of steroid hormones in the regulation of male reproduction ... 207
Table 12.4 Duration of spermatogenesis in different mammalian species (development from spermatogonia to spermatozoa) . 211
Table 12.5 Pregnancy outcome and fetal compartments in humans and domestic animal species .. 214
Table 12.6 Progestin sources during gestation in humans and domestic animal species ... 216
Table 12.7 Stages and duration of parturition in humans and some domestic animal species ... 217
Table 13.1 Most important examples for barrier defense mechanisms in vertebrates ... 223
Table 13.2 Types of stimuli leading to inflammation 224
Table 13.3 Pathogen recognition receptors and their ligands 229
Table 13.4 The granula contents of neutrophils 232
Table 13.5 The different phenotypes of macrophages 235
Table 13.6 Classical view of the immune system 244
Table 13.7 The mechanisms for antigen receptor diversity create a vast number of different antigen receptors 251
| Table 13.8 | Advantages and disadvantages of the great receptor repertoire of T and B cells | 252 |
| Table 13.9 | Routes of antigen entry determines immune outcome | 254 |
| Table 13.10 | The Immunoglobulin classes of vertebrates | 261 |
| Table 14.1 | Severity categories | 275 |
| Table 14.2 | The “3Rs”: replacement–reduction–refinement | 276 |
Comparative Medicine
Anatomy and Physiology
Jensen-Jarolim, E. (Ed.)
2014, XVI, 300 p. 56 illus., 54 illus. in color., Hardcover
ISBN: 978-3-7091-1558-9