1 Introduction .. 1
References .. 3

2 Basis of Derivative Spectrophotometry 5
 2.1 The Main Law of Light Absorption by a Substance 5
 2.1.1 Reasons for Deviation from Bouguer’s Law 7
 2.2 Correctness and Accuracy of Spectrophotometric Data 10
 2.2.1 Main Factors Influencing the Accuracy of Spectrophotometric
 Measurements .. 11
 2.2.2 Difference (Differential) Spectrophotometry 15
 2.2.3 Measurement Errors of Difference Spectrophotometry 17
 2.3 Derivative Spectrophotometry .. 19
 2.3.1 Methods of Derivative Signal Registration and Diagrams of
 Differential Analyzers ... 38
 2.3.2 Parameter Optimization of the Differentiating Circuit 43
 2.3.3 Derivative Spectrophotometry of Difference Spectra 53
 2.3.4 Method of the Pulse Amplitude-Modulated Fluorescence for the
 Solution of Ecological-Biochemical Problems 54
References ... 57

3 The Derivative Spectrophotometry Method for Analysis of
 Biologically Active Substances ... 71
 3.1 Derivative Spectrophotometry for Analysis of a Number of
 Guanidine Preparations .. 71
 3.2 Chelating Ability of 1,3-Bis-((p-Chlorobenzylidene)amino)
 Guanidine: Complexes with Ca$^{2+}$ and La$^{3+}$ Ions 79
 3.3 The Special Features of the Ca$^{2+}$ Binding by mono-, bis- and tris-
 Substituted Guanidine Derivatives 84
 3.4 Special Features of Interaction of Bis-((Chlorobenzylidene)amino)
 Guanidine Derivatives with Ca$^{2+}$ Depending on the Chlorine Atom
 Position in the Molecule .. 93
3.5 The Specific Character of Ca$^{2+}$ Interaction with ((Benzyldiene)amino) Guanidine Derivatives Containing Electron-Donor or Electron-Acceptor Substituters ... 101

3.6 Special Features of Calcium Ions Interaction with Bis-((4-hydroxy-3-methoxybenzilidene)amino) Guanidine and Bis-((4-cyanobenzilidene) amino) Guanidine ... 107

3.7 The Proof of Polycomponent Composition of the Promising Antitumor Drug “Ukrain” ... 113

3.8 Derived Spectra Application for the Analysis of Derived Forms of Nondepolarizing Muscle Relaxant Tercuronium, of Vitamins and Hormones .. 125

3.8.1 Comparative Analysis of Tercuronium Derivatives 125

3.8.2 The Reasonability of Derived Spectra Application for the Analysis of Commercial Preparations of Vitamins and Hormones ... 128

3.9 The Importance of Derivative Spectrophotometry in Modern Studies of Aromatic Amino Acids and Proteins 133

3.9.1 Special Features of Derived Spectra of Phenylalanine, Tyrosine, and Tryptophan ... 135

3.9.2 Special Features of Phenylalanine Spectra Change Caused by Influence of Gamma Radiation ... 143

3.9.3 Specific Character of Tyrosine Spectra Changes Under Influence of Gamma-Radiation ... 149

3.9.4 The Character of Tryptophan Derived Spectra Change Under Influence of Gamma-Irradiation ... 154

3.9.5 The Comparative Characteristic of Albumin Denaturation Spectral Changes Under Thermal and Radiation Exposures ... 160

3.9.6 Changes of the Gamma Globulin Optical Spectra Under γ-Irradiation .. 167

3.9.7 Special Features of γ-Globulin Spectra Changes During γ-Globulin Denaturation Caused by Thermal and Radiation Exposure .. 174

3.9.8 The Coupling of Albumin Derived Spectra Change with the Determination Accuracy of Albumin/Globulin Coefficient for Radiation Injuries ... 182

References .. 189

4 Applicability of the DSHO Method in Work with Pigments of Plants and Animals ... 197

4.1 Derived Spectra of High Orders for Some Carotenoids 204

4.2 Neoxanthin as a Probable Key Product of Formation of α- and β-Carotenoid Derivatives ... 213

4.3 Metabolic Transformations of Labeled 14C- or 3H-Carotene in Animal Tissues ... 219
4.4 Importance of Derivative Spectrophotometry for Study of Alternative Ways of Carotenoids Biosynthesis in Procaryota and Eucaryota ... 223
4.5 Possibility of Participation of α-Ketoglutaric Acid Funds in Carotenoids Biosynthesis in Chloroplasts ... 232
4.6 Malic Acid as the Source for Carotenoids Synthesis in Plants with C4-Way of Carbon in Photosynthesis .. 237
4.7 Indication of the De-epoxidation Reaction with the Help of Derived Spectra ... 244
 4.7.1 Coupling of the De-epoxidation Reaction of Xanthophylls with Change of DII Spectra at λ = 460–470 nm 244
 4.7.2 Capabilities of Derivative Spectrophotometry for Assessment of the Influence of Poisons and Herbicides as Extreme Factors of the Environment ... 253
 4.7.3 Features of Influence of Photosystem Inhibitors and of Photophosphorylation Uncouplers on Dynamics of Pigment Content ... 258
 4.7.4 The Coupling of Xanthophylls Transformations with Chloroplast Energetics ... 263
 4.7.5 Assessment of Characteristics of Radiation Injuries of the Photosynthetic Apparatus In Vivo with Help of Derived Spectra of High Orders ... 270
 4.7.6 Derivative Spectrophotometry for the Analysis of Pigments of Blood and Its State ... 284
 4.7.7 Possibility of Application of the Method of Differentiation of Spectral Curves to the Decoding of Electrocardiograms for the Analysis of Heart Activity ... 287
References ... 289

5 EPR Spectroscopy for Solution of Some Scientific Real-World Problems in Biology, Medicine and Ecology ... 301
 5.1 The Phenomenon of Magnetic Resonance ... 302
 5.2 EPR Phenomenon ... 306
 5.2.1 Induced Electron Quantum Transitions in EPR Phenomenon ... 306
 5.2.2 Hyperfine Electron–Nuclear Interaction in the EPR Method ... 310
 5.2.3 A Stationary Method of Magnetic Resonance Signals Detection ... 313
 5.3 EPR-Dosimetry ... 317
 5.3.1 EPR-Dosimetry of Population ... 317
 5.3.2 EPR-Dosimetry of Objects and Territories ... 320
 5.3.3 “Alanine” Dosimetry ... 322
 5.4 Detection of Paramagnetic Ions in Water Solutions at Room Temperature ... 322
5.5 EPR of Paramagnetic Ions in Low-Temperature Water-Acidic Matrices .. 324
5.6 Detection of Impurities Capable of Being Photooxidized, in Water, with the Use of Electron Phototransfer Reaction 327
5.7 Determination of Deuterium Concentration in Water 330
5.8 Multiquantum Processes in Reactions of Photosynthesis and Photosensitization .. 332
5.9 Resolution of Overlapped Spectra .. 334
5.10 Small-Sized Specialized EPR Equipment 338
5.11 Measurement of Dielectric Properties of Substances at
 Frequencies 10 and 30 GHz .. 342
References .. 346

6 Conclusion ... 349

Index ... 353
Derivative Spectrophotometry and Electron Spin Resonance (ESR) Spectroscopy for Ecological and Biological Questions
Saakov, V.S.; Drapkin, V.Z.; Krivchenko, A.I.; Rozengart, E.V.; Bogachev, Y.V.; Knyazev, M.N.
2013, XVI, 360 p., Hardcover
ISBN: 978-3-7091-1006-5