Part I Introduction

1 A First Encounter .. 3
 1.1 Introduction to Network Analysis 3
 1.2 Data ... 5
 1.2.1 From Relationship to Graph 6
 1.2.2 First Probes into the Data 8
 1.2.3 Measuring Indirect Effects 12
 1.2.4 Distributions 13
 1.3 Network Analysis Literacy: A Primer 15
 1.3.1 Visualizations 15
 1.4 Approaches to Network Analysis 18
 1.5 Outlook ... 19
 1.6 Recommended Reading 20
 References ... 21

2 Graph Theory, Social Network Analysis, and Network Science 23
 2.1 Introduction 23
 2.2 The Basis 24
 2.2.1 Graph Theory 24
 2.2.2 The Origins of Social Network Analysis
 in Sociology 27
 2.2.3 Typical Viewpoints of Social Network Analysis
 30
 2.2.4 Network Science 31
 2.3 Universal Structures versus Individual Features 35
 2.3.1 Statistical Physics and Early Complex Network
 Analysis 37
 2.3.2 Statistical Physics and Complex
 Network Analysis 38
 2.3.3 Complex Network Analysis in Other Disciplines 40
3 Definitions

3.1 Introduction .. 57
3.2 Mathematical Abbreviations 58
3.3 Set Theoretic Terms 58
 3.3.1 Function 60
 3.3.2 Partitions and Hierarchical Clustering 60
3.4 Mathematical Operators 61
3.5 Graph Theoretic Definitions 61
 3.5.1 Distances in Graphs 63
 3.5.2 Degrees and Walks in Graphs 63
 3.5.3 Graph Families 65
3.6 Data Structures for Graphs 66
 3.6.1 Basic Data Structures 67
 3.6.2 Basic Data Structures for Simple Graphs 68
 3.6.3 Data Structures and Definitions for Directed Graphs 71
 3.6.4 Weighted Graphs 72
 3.6.5 Bipartite and Affiliation Networks 73
 3.6.6 Multiplex Networks 74
3.7 Graph File Formats 74
 3.7.1 Graph Formats for Visualization 77
3.8 A Little Bit of Linear Algebra 77
 3.8.1 Scalar Product 77
3.9 Normalization 78
 3.9.1 Covariance 78
 3.9.2 Correlation Coefficient 79
3.10 Algorithms and Runtime Complexity 80
3.11 Plots and Diagrams 81
3.12 Distributions 82
3.13 A Bit of Statistics 82
3.14 Markov Chains 83
 3.14.1 Properties of Markov Chains 85
8 Understanding and Designing Network Measures

8.1 Introduction 215
8.2 Beware of verbal Descriptions—Why Mathematical Equations are Necessary 216
8.2.1 Reciprocity 218
8.3 Profile of a Measure’s Behavior 221
8.3.1 Applicability 222
8.3.2 Range of the Measure and Extremal Graphs 225
8.3.3 Scalability 226
8.3.4 Size Independence/Comparability 227
8.3.5 Robustness 228
8.3.6 Assumptions 228
8.4 How to Design a Network Analytic Measure 230
8.4.1 Generalizing a Method 231
8.4.2 Another Interpretation of the Degree in Weighted Graphs 235
8.4.3 Clustering Coefficient for Bipartite Graphs 235
8.5 Summary .. 238
8.6 Recommended Reading 238
8.7 Exercises .. 239
References ... 241

9 Centrality Indices 243
9.1 Introduction 243
9.2 What is a Centrality Index? 244
9.3 Classic Centrality Indices 246
9.3.1 Degree-Like Centralities 246
9.3.2 Closeness-Like Centralities 249
9.3.3 Stress and betweenness-Like Centralities 250
9.3.4 Correlation between Different Centrality Indices 255
9.3.5 Comparing Centrality Values in Different Networks 256
9.3.6 The Centralization of a Graph 258
9.4 Generalizing Centrality Indices 259
9.4.1 Centrality Indices for Networks between Different Groups of Nodes 259
9.4.2 Centrality Indices for Directed Networks 260
9.4.3 Centrality Indices for Weighted Networks 260
9.5 Characterizations of Centrality Indices 261
9.5.1 The Graph-Theoretic Perspective 261
9.5.2 Network Flow Processes and Centrality Indices 264
11.4 Weighted Relationships 322
11.4.1 Interrelationship with Chosen Method 322
11.4.2 Dynamic Weights 325
11.4.3 Thresholding 326
11.5 Proxy Relationships 327
11.5.1 Proxies for Sexual Relationship Networks .. 327
11.5.2 Online Social Network Data as Proxies 329
11.5.3 With Whom do We Discuss Important Matter ... 330
11.5.4 Co-authorship versus Collaboration 332
11.5.5 Interchangeability of Social Relations 332
11.5.6 Observational versus Recalled Interactions 334
11.5.7 Email Interaction versus Communication 334
11.5.8 Internet Network Data and Their Proxies 336
11.6 Relations that don’t Lend Themselves to a Network Representation 338
11.6.1 Information Contained in Relations 338
11.6.2 Mathematical Relations without Network Processes 340
11.6.3 Aggregating Paths into Complex Networks 341
11.6.4 Relationships, Network Processes, and Complex Networks 344
11.7 Horizons of Network Processes 348
11.8 Data Responsibility 350
11.8.1 Evaluating Existing Network Data for Re-use 351
11.8.2 Data Hygiene, Producer and Consumer Rules 353
11.8.3 Producer Rules: Making Data Reusable 354
11.8.4 Consumer Rules: Validating Data 356
11.9 Aim of Analysis (A-Rules) 357
11.9.1 Publishers’ Responsibility 357
11.10 Summary .. 358
11.11 Further Reading 359
References ... 359

12 Literacy: When Is a Network Model Explanatory? 363
12.1 Introduction .. 363
12.2 Models of Networks and Processes 365
12.2.1 What is a Scientific Model? 366
12.2.2 Modelling Processes on Complex Networks 370
12.2.3 Evolution of Models 371
12.3 Structure, Function, and Behavior of Network Models 372
12.3.1 Interpretation of ‘Smallness’ as a Function 373
12.3.2 Properties and Behavior of “Scale-Free” Networks 377
12.4 Explanatory Models .. 381
 12.4.1 When Preferential Attachment is not Enough 382
 12.4.2 Networks with a “Scale-Free” Degree Distribution
 Which are not “Scale-Free” 383
 12.4.3 The Internet—A “Scale-Free” Network without a
 Hub-Dominated Architecture 384
 12.4.4 Shrinking Diameters in the Evolution of Complex
 Networks ... 385
 12.4.5 Measuring Preferential Attachment 385
12.5 Summary .. 387
12.6 Further Reading ... 389
References ... 392

13 Literacy: Choosing the Best Null Model 395
 13.1 Introduction ... 395
 13.2 Assessing the Small-World Phenomenon 398
 13.2.1 Clustering Coefficient in One-Mode Projections
 of Bipartite Graphs 399
 13.3 The Rich-Club Coefficient 401
 13.4 Reciprocity Revisited II 405
 13.5 A New Perspective on One-Mode Projections 407
 13.5.1 The Simple Independence Model SIM 408
 13.5.2 An Example: MovieLens 410
 13.5.3 Discussion of the SIM 415
 13.5.4 The Fixed Degree Sequence Model FDSM for
 Bipartite Graphs ... 418
 13.6 Evaluating Expectation Models by a Gold Standard or
 Ground Truth .. 419
 13.6.1 Building the OMP 420
 13.6.2 Is There a Weighted FDSM? 421
 13.7 Can the Configuration Model Replace the FDSM? 422
 13.8 Summary ... 425
 13.9 Further Reading .. 426
 13.10 Exercises ... 427
References ... 428

14 Literacy Interpretation .. 431
 14.1 Introduction ... 431
 14.2 The Interpretation of Measures in the Context
 of a Complex System 432
 14.3 Interpretation of Distance-Based Measures 435
 14.3.1 Robustness Measures Based on Distance 435
 14.3.2 Comparing Average Distances of Different
 Networks ... 440
 14.3.3 Interpretation of Low Average Distances
 in Metabolic Networks 441
Network Analysis Literacy
A Practical Approach to the Analysis of Networks
Zweig, K.A.
2016, XXIII, 535 p. 126 illus., 14 illus. in color., Hardcover
ISBN: 978-3-7091-0740-9