Contents

Part I: Advances in Subarachnoid Hemorrhage and Cerebral Vasospasm

Section I: Honored Guest & Honored Speaker Speeches

A Clinical Review of Cerebral Vasospasm and Delayed Ischaemia Following Aneurysm Rupture ................................................................. 5 Dorsch, N.

New Regulatory, Signaling Pathways, and Sources of Nitric Oxide ............. 7 Pluta, R.M.

Section II: Advances in Subarachnoid Hemorrhage Research

Advances in Experimental Subarachnoid Hemorrhage .......................... 15 Zhou, Y., Martin, R.D., and Zhang, J.H.

Advances in Treatment of Cerebral Vasospasm: an Update ......................... 23 Hansen-Schwartz, J.

Roles of Signal Transduction Mechanisms in Cerebral Vasospasm Following Subarachnoid Hemorrhage: Overview ........................................ 27 Nishizawa, S.

Part II: Mechanistic Studies

Section III: Early Brain Injury After Subarachnoid Hemorrhage


Association of APOE Polymorphism with the Change of Brain Function in the Early Stage of Aneurysmal Subarachnoid Hemorrhage ..................... 39 Lin, B., Dan, W., Jiang, L., Yin, X.-h., Wu, H.-t., and Sun, X.-c.


Early Micro Vascular Changes After Subarachnoid Hemorrhage ................. 49 Sehba, F.A. and Friedrich, V.
Immunological Response in Early Brain Injury After SAH ................. 57
Sozen, T., Tsuchiyama, R., Hasegawa, Y., Suzuki, H., Jadhav, V.,
Nishizawa, S., and Zhang, J.H.

Mechanisms of Early Brain Injury After SAH: Matrixmetalloproteinase 9 .......... 63
Guo, Z.-d., Sun, X.-c., and Zhang, J.H.

Tyrosine Phosphatase Inhibition Attenuates Early Brain Injury
After Subarachnoid Hemorrhage in Rats .............................................. 67

Protection of Minocycline on Early Brain Injury After Subarachnoid
Hemorrhage in Rats ................................................................. 71

Role of Osteopontin in Early Brain Injury After Subarachnoid
Hemorrhage in Rats ................................................................. 75
Suzuki, H., Ayer, R., Sugawara, T., Chen, W., Sozen, T., Hasegawa, Y.,
Kanamaru, K., and Zhang, J.H.

Matrix Metalloproteinase 9 Inhibition Reduces Early Brain Injury
in Cortex After Subarachnoid Hemorrhage ........................................ 81

Section IV: Nitric Oxide & Cortical Spreading Depolarization After
Subarachnoid Hemorrhage

Nitric Oxide Synthase Inhibitors and Cerebral Vasospasm ..................... 87
Jung, C.S.

The Role of Nitric Oxide Donors in Treating Cerebral Vasospasm
After Subarachnoid Hemorrhage ...................................................... 93
Fathi, A.R., Bakhtian, K.D., and Pluta, R.M.

Nitric Oxide in Early Brain Injury After Subarachnoid Hemorrhage ............. 99
Sehba, F.A., and Bederson, J.B.

Nitric Oxide Related Pathophysiological Changes Following
Subarachnoid Haemorrhage ......................................................... 105
Sabri, M., Ai, J., and Macdonald, R.L.

Endothelin-1(1–31) Induces Spreading Depolarization in Rats .................... 111
Jorks, D., Major, S., Oliveira-Ferreira, A.I., Kleeberg, J., and Dreier, J.P.

The Gamut of Blood Flow Responses Coupled to Spreading Depolarization
in Rat and Human Brain: from Hyperemia to Prolonged Ischemia ............. 119
Offenhauser, N., Windmüller, O., Strong, A.J., Fuhr, S., and Dreier, J.P.

Cerebral Microdialysis in Acutely Brain-Injured Patients
with Spreading Depolarizations ...................................................... 125
Krajewski, K.L., Orakcioglu, B., Haux, D., Hertle, D.N., Santos, E.,
Kiening, K.L., Unterberg, A.W., and Sakowitz, O.W.
Section V: Pathophysiology of Cerebral Vasospasm

Mitogen-Activated Protein Kinases in Cerebral Vasospasm After Subarachnoid Hemorrhage: A Review ...................................................... 133
Suzuki, H., Hasegawa, Y., Kanamaru, K., and Zhang, J.H.

Association of Apolipoprotein E Polymorphisms with Cerebral Vasospasm After Spontaneous Subarachnoid Hemorrhage ......................... 141

Impact of Subarachnoid Hemorrhage on Local and Global Calcium Signaling in Cerebral Artery Myocytes .................................................. 145
Koide, M., Nystoriak, M.A., Brayden, J.E., and Wellman, G.C.

Enhanced Angiogenesis and Astrocyte Activation by Ecdysterone Treatment in a Focal Cerebral Ischemia Rat Model ........................................ 151

Bilirubin Oxidation Products Seen Post Subarachnoid Hemorrhage Have Greater Effects on Aged Rat Brain Compared to Young ...................... 157

Preliminary Results of an ICP-Controlled Subarachnoid Hemorrhage Rabbit Model for the Study of Delayed Cerebral Vasospasm ..................... 163

PKG1α Inhibits the Proliferation of Cerebral Arterial Smooth Muscle Cell Induced by Oxyhemoglobin After Subarachnoid Hemorrhage ............... 167

Characteristics of In Vivo Animal Models of Delayed Cerebral Vasospasm .... 173
Marbacher, S., Fandino, J., and Kitchen, N.

Endothelin Related Pathophysiology in Cerebral Vasospasm: What Happens to the Cerebral Vessels? ............................................. 177
Vatter, H., Konczalla, J., and Seifert, V.

Expression and Role of COMT in a Rat Subarachnoid Hemorrhage Model ........ 181
He, Z., Sun, X., Guo, Z., and Zhang, J.H.

Section VI: Clinical Manifestations of Subarachnoid Hemorrhage

Monitoring of the Inflammatory Response After Aneurysmal Subarachnoid Haemorrhage in the Clinical Setting: Review of Literature and Report of Preliminary Clinical Experience ........................................ 191
Muroi, C., Mink, S., Seule, M., Bellut, D., Fandino, J., and Keller, E.

Perimesencephalic Subarachnoid Hemorrhage: Risk Factors, Clinical Presentations, and Outcome ......................................................... 197
Kong, Y., Zhang, J.H., and Qin, X.
The Relationship Between IL-6 in CSF and Occurrence of Vasospasm  
After Subarachnoid Hemorrhage .......................................................... 203  
Ni, W., Gu, Y.X., Song, D.L., Leng, B., Li, P.L., and Mao, Y.

Non-Aneurysm Subarachnoid Hemorrhage in Young Adults .................... 209  
Wang, T., Zhang, J.H., and Qin, X.

Cardiac Damage After Subarachnoid Hemorrhage .................................. 215  
Wu, B., Wang, X., and Zhang, J.H.

Analysis on Death-Associated Factors of Patients with Subarachnoid  
Hemorrhage During Hospitalization ...................................................... 219  
Wang, T., Zhang, J.H., and Qin, X.

Clinical Study of Changes of Cerebral Microcirculation in Cerebral  
Vasospasm After SAH ........................................................................... 225  
Chai, W.-n., Sun, X.-c., Lv, F.-j., Wan, B., and Jiang, L.

Effect of Weekend Admission on In-Hospital Mortality After  
Subarachnoid Hemorrhage in Chongqing China ................................... 229  
Zhang, G., Zhang, J.H., and Qin, X.

The Correlation Between COMT Gene Polymorphism and Early  
Cerebral Vasospasm After Subarachnoid Hemorrhage ............................ 233  
He, Z., Sun, X., Guo, Z., and Zhang, J.H.

Fever Increased In-Hospital Mortality After Subarachnoid Hemorrhage ....... 239  
Zhang, G., Zhang, J.H., and Qin, X.

Subarachnoid Hemorrhage in Old Patients in Chongqing China ............... 245  
Zhang, Y., Wang, T., Zhang, J.H., Zhang, J., and Qin, X.

Author Index ......................................................................................... 249

Subject Index ...................................................................................... 251

Table of Contents (Vols. 1 and 2) .......................................................... 257
Early Brain Injury or Cerebral Vasospasm
Vol 1: Pathophysiology
Feng, H.; Mao, Y.; Zhang, J.H. (Eds.)
2011, XII, 256 p., Hardcover
ISBN: 978-3-7091-0352-4