3.5 Separation of Time Scales .. 50
3.6 Forced Waves .. 51
3.7 How the Mixed-Rossby Gravity Wave Earned Its Name 53
3.8 Hough-Hermite Vector Basis 54
 3.8.1 Introduction .. 54
 3.8.2 Inner Product and Orthogonality 56
 3.8.3 Orthonormal Basis Functions 57
3.9 Applications of the Hough-Hermite Basis: Linear Initial-Value Problems .. 59
3.10 Initialization Through Hough-Hermite Expansion 60
3.11 Energy Relationships .. 61
3.12 The Equatorial Beta-Plane as the Thin Limit of the Nonlinear Shallow Water Equations on the Sphere 64
References .. 65

4 The “Long Wave” Approximation & Geostrophy 69
 4.1 Introduction .. 69
 4.2 Quasi-Geostrophy ... 69
 4.3 The “Meridional Geostrophy”, “Low Frequency” or “Long Wave” Approximation 71
 4.4 Boundary Conditions .. 75
 4.5 Frequency Separation of Slow [Rossby/Kelvin] and Fast [Gravity] Waves .. 77
 4.6 Initial Value Problems in an Unbounded Ocean, Linearized About a State of Rest, in the Long Wave Approximation ... 78
 4.7 Reflection from an Eastern Boundary in the Long Wave Approximation ... 79
 4.7.1 The Method of Images 79
 4.7.2 Dilated Images .. 80
 4.7.3 Zonal Velocity .. 81
 4.8 Forced Problems in the Long Wave Approximation 83
References .. 84

5 The Equator as Wall: Coastally Trapped Waves and Ray-Tracing ... 87
 5.1 Introduction ... 87
 5.2 Coastally-Trapped Waves 88
 5.3 Ray-Tracing For Coastal Waves 92
 5.4 Ray-Tracing on the Equatorial Beta-Plane 95
 5.5 Coastal and Equatorial Kelvin Waves 100
 5.6 Topographic and Rotational Rossby Waves and Potential Vorticity ... 101
References .. 103
9.4.1 Forced Eigenoperators: Hermite Series 200
9.4.2 Hutton–Euler Acceleration of Slowly Converging
 Hermite Series 202
9.4.3 Regularized Forcing 203
9.4.4 Bessel Function Explicit Solution for the
 Yoshida Jet ... 204
9.4.5 Rational Approximations: Two-Point Padé
 Approximants and Rational Chebyshev Galerkin
 Methods .. 207

9.5 Unstratified Models of the Undercurrent 209
 9.5.1 Theory of Fofonoff and Montgomery (1955) 210
 9.5.2 Model of Stommel (1960) 211
 9.5.3 Gill (1971) and Hidaka (1961) 213

References .. 221

10 Stratified Models of Mean Currents 223
 10.1 Introduction .. 223
 10.2 Modal Decompositions for Linear, Stratified Flow 226
 10.3 Different Balances of Forces 229
 10.3.1 Bjerknes Balance 230
 10.4 Forced Baroclinic Flow in the “Bjerknes” Approximation . 232
 10.4.1 Other Balances 233
 10.5 The Sensitivity of the Undercurrent to Parameters 239
 10.6 Observations of Subsurface Countercurrents
 (Tsuchiya Jets) 242
 10.7 Alternate Methods for Vertical Structure with Viscosity 243
 10.8 McPhaden’s Model of the EUC and SSCC’s: Results 245
 10.9 A Critique of Linear Models of the Continuously-Stratified,
 Wind-Driven Ocean 247

References .. 248

11 Waves and Beams in the Continuously Stratified Ocean 249
 11.1 Introduction .. 249
 11.1.1 Equatorial Beams: A Theoretical Inevitability 249
 11.1.2 Slinky Physics and Impedance Mismatch,
 or How Water Can Be as Reflective as Silvered
 Glass .. 251
 11.1.3 Shallow Barriers to Downward Beams 252
 11.1.4 Equatorial Methodology 253
 11.2 Alternate Form of the Vertical Structure Equation 254
 11.3 The Thermocline as a Mirror 255
 11.4 The Mirror-Thermocline Concept: A Critique 262
 11.5 The Zonal Wavenumber Condition for Strong Excitation
 of a Mode ... 265
12 Stable Linearized Waves in a Shear Flow 273
12.1 Introduction 273
12.2 $U(y)$: Pure Latitudinal Shear 274
12.3 Neutral Waves in Flow Varying with Both Latitude
and Height: Numerical Studies 276
12.4 Vertical Shear and the Method of Multiple Scales 278
References .. 282

13 Inertial Instability, Pancakes and Deep Internal Jets 285
13.1 Introduction: Stratospheric Pancakes and Equatorial
Deep Jets ... 285
13.2 Particle Argument 286
13.2.1 Linear Inertial Instability 286
13.3 Centrifugal Instability: Rayleigh’s Parcel Argument 287
13.4 Equatorial Gamma-Plane Approximation 289
13.5 Dynamical Equator 291
13.6 Gamma-Plane Instability 292
13.7 Mixed Kelvin-Inertial Instability 293
13.8 Summary ... 294
References .. 295

14 Kelvin Wave Instability: Critical Latitudes and Exponentially
Small Effects .. 297
14.1 Proxies and the Optical Theorem 298
14.2 Six Ways to Calculate Kelvin Instability 300
14.2.1 Power Series for the Eigenvalue 301
14.2.2 Hermite-Padé Approximants 302
14.2.3 Numerical Methods 302
14.3 Instability for the Equatorial Kelvin Wave in the Small
Wavenumber Limit 305
14.3.1 Beyond-All-Orders Rossby Wave Instability 306
14.3.2 Beyond-All-Orders Kelvin Wave Instability
in Weak Shear in the Long Wave
Approximation ... 307
14.4 Kelvin Instability in Shear: The General Case 307
References .. 308

15 Nonmodal Instability 311
15.1 Introduction 311
15.2 Couette and Poiseuille Flow and Subcritical Bifurcation 312
15.3 The Fundamental Orr Solution 313
Contents

15.4 Interpretation: The “Venetian Blind Effect” 315
15.5 Refinements to the Orr Solution 316
15.6 The “Checkerboard” and Bessel Solution 318
 15.6.1 The “Checkerboard” Solution 318
15.7 The Dandelion Strategy .. 320
15.8 Three-Dimensional Transients 320
15.9 ODE Models and Nonnormal Matrices 321
15.10 Nonmodal Instability in the Tropics 323
15.11 Summary ... 325
References .. 326

16 Nonlinear Equatorial Waves ... 329
 16.1 Introduction ... 330
 16.2 Weakly Nonlinear Multiple Scale Perturbation Theory 331
 16.2.1 Reduction from Three Space Dimensions to One 331
 16.2.2 Three Dimensions and Baroclinic Modes 333
 16.3 Solitary and Cnoidal Waves 334
 16.4 Dispersion and Waves ... 335
 16.4.1 Derivation of the Group Velocity Through the Method of Multiple Scales 341
 16.5 Integrability, Chaos and the Inverse Scattering Method 342
 16.6 Low Order Spectral Truncation (LOST) 343
 16.7 Nonlinear Equatorial Kelvin Waves 344
 16.7.1 Physics of the One-Dimensional Advection (ODA) Equation: \(u_t + cu_x + buu_x = 0 \) 345
 16.7.2 Post-Breaking: Overturning, Taylor Shock or “Soliton Clusters”? 348
 16.7.3 Viscous Regularization of Kelvin Fronts: Burgers’ Equation And Matched Asymptotic Perturbation Theory 349
 16.8 Kelvin-Gravity Wave Shortwave Resonance: Curving Fronts and Undulations 351
 16.9 Kelvin Solitary and Cnoidal Waves 352
 16.10 Corner Waves and the Cnoidal-Corner-Breaking Scenario 356
 16.11 Rossby Solitary Waves 359
 16.12 Antisymmetric Latitudinal Modes and the Modified Korteweg-deVries (MKdV) Equation 364
 16.13 Shear Effects on Nonlinear Equatorial Waves 365
 16.14 Equatorial Modons .. 365
 16.15 A KdV Alternative: The Regularized Long Wave (RLW) Equation ... 369
 16.15.1 The Useful Non-uniqueness of Perturbation Theory 369
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.15.2</td>
<td>Eastward-Traveling Modons and Other Cryptozoa</td>
<td>371</td>
</tr>
<tr>
<td>16.16</td>
<td>Phenomenology of the Korteweg-deVries Equation on an Unbounded Domain</td>
<td>372</td>
</tr>
<tr>
<td>16.16.1</td>
<td>Standard Form/Group Invariance</td>
<td>372</td>
</tr>
<tr>
<td>16.16.2</td>
<td>The KdV Equation and Longitudinal Boundaries</td>
<td>372</td>
</tr>
<tr>
<td>16.16.3</td>
<td>Calculating the Solitons Only</td>
<td>377</td>
</tr>
<tr>
<td>16.16.4</td>
<td>Elastic Soliton Collisions</td>
<td>378</td>
</tr>
<tr>
<td>16.16.5</td>
<td>Periodic BC</td>
<td>379</td>
</tr>
<tr>
<td>16.16.6</td>
<td>The KdV Cnoidal Wave</td>
<td>381</td>
</tr>
<tr>
<td>16.17</td>
<td>Soliton Myths and Amazements</td>
<td>382</td>
</tr>
<tr>
<td>16.17.1</td>
<td>Imbricate Series and the Nonlinear Superposition Principle</td>
<td>382</td>
</tr>
<tr>
<td>16.17.2</td>
<td>The Lemniscate Cnoidal Wave: Strong Overlap of the Soliton and Sine Wave Regimes</td>
<td>384</td>
</tr>
<tr>
<td>16.17.3</td>
<td>Solitary Waves Are Not Special</td>
<td>386</td>
</tr>
<tr>
<td>16.17.4</td>
<td>Why “Solitary Wave” Is the Most Misleading Term in Oceanography</td>
<td>386</td>
</tr>
<tr>
<td>16.17.5</td>
<td>Scotomas and Discovery: The Lonely Crowd</td>
<td>387</td>
</tr>
<tr>
<td>16.18</td>
<td>Weakly Nonlocal Solitary Waves</td>
<td>389</td>
</tr>
<tr>
<td>16.18.1</td>
<td>Background</td>
<td>389</td>
</tr>
<tr>
<td>16.18.2</td>
<td>Initial Value Experiments</td>
<td>390</td>
</tr>
<tr>
<td>16.18.3</td>
<td>Nonlinear Eigenvalue Solutions</td>
<td>393</td>
</tr>
<tr>
<td>16.19</td>
<td>Tropical Instability Vortices</td>
<td>394</td>
</tr>
<tr>
<td>16.20</td>
<td>The Missing Soliton Problem</td>
<td>397</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>398</td>
</tr>
</tbody>
</table>

17 Nonlinear Wavepackets and Nonlinear Schroedinger Equation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>The Nonlinear Schroedinger Equation for Weakly Nonlinear Wavepackets: Envelope Solitons, FPU Recurrence and Sideband Instability</td>
<td>405</td>
</tr>
<tr>
<td>17.2</td>
<td>Linear Wavepackets</td>
<td>406</td>
</tr>
<tr>
<td>17.2.1</td>
<td>Perturbation Parameters</td>
<td>408</td>
</tr>
<tr>
<td>17.3</td>
<td>Derivation of the NLS Equation from the KdV Equation</td>
<td>409</td>
</tr>
<tr>
<td>17.3.1</td>
<td>NLS Dilation Group Invariance</td>
<td>412</td>
</tr>
<tr>
<td>17.3.2</td>
<td>Defocusing</td>
<td>413</td>
</tr>
<tr>
<td>17.3.3</td>
<td>Focusing, Envelope Solitons and Resonance</td>
<td>414</td>
</tr>
<tr>
<td>17.3.4</td>
<td>Nonlinear Plane Wave</td>
<td>414</td>
</tr>
<tr>
<td>17.3.5</td>
<td>Envelope Solitary Wave</td>
<td>415</td>
</tr>
<tr>
<td>17.3.6</td>
<td>NLS Cnoidal and Dnoidal Waves</td>
<td>415</td>
</tr>
<tr>
<td>17.3.7</td>
<td>N-Soliton Solutions</td>
<td>417</td>
</tr>
<tr>
<td>17.3.8</td>
<td>Breathers</td>
<td>417</td>
</tr>
</tbody>
</table>