Contents

1 Review of the Development of Dedicated Mobile Communications for High-Speed Railway .. 1
 1.1 Railway Development in China 1
 1.2 High-Speed Railway Development in the World 3
 1.2.1 High-Speed Railway Development in China 5
 1.3 The Active Role of Mobile Communications for Railway 8
 1.4 GSM for Railway .. 9
 1.4.1 The Development of GSM-R 10
 1.4.2 GSM-R Key Technology and Engineering Measures ... 11
 1.5 Next-Generation Mobile Communication System for Railway .. 14
 References .. 17

2 Key Issues for GSM-R and LTE-R 19
 2.1 GSM-R Architecture ... 19
 2.1.1 GSM-R Network Composition 19
 2.1.2 Mobile Switching Subsystem 19
 2.1.3 Mobile Intelligent Network Subsystem 21
 2.1.4 General Packet Radio Service (GPRS) Subsystem 22
 2.1.5 Base Station Subsystem 23
 2.1.6 Operation and Support Subsystem (OSS) 24
 2.1.7 Terminal .. 25
 2.2 GSM-R Network Hierarchical Structure 25
 2.2.1 Mobile Switching Network 25
 2.2.2 Intelligent Network 26
 2.2.3 General Packet Radio Service Network 26
 2.3 LTE-R Architecture .. 27
 2.4 Key Technologies for GSM-R 37
 2.5 Key Technologies for LTE-R 42
 2.5.1 The Application Requirements of the Next-Generation Railway Mobile Communication System 44
2.5.2 The Technology System and Network Architecture of the Next-Generation Railway Mobile Communication System ... 45
2.5.3 Frequency and Bandwidth Requirements of the Next-Generation Railway Mobile Communication System ... 46
2.5.4 The Key Technology in the Next-Generation Railway Mobile Communication System ... 46
2.5.5 Hybrid Networking of GSM-R and the Next-Generation Mobile Communication System ... 50
2.5.6 The Evaluation and Optimization of High-Speed Railway Wireless Resource Management Mechanism .. 51

2.6 Summary .. 53

References .. 53

3 Radio Propagation and Wireless Channel for Railway Communications .. 57
3.1 High-Speed Railway Propagation Scenarios ... 57
3.1.1 High-Speed Railway Propagation Scenarios Definition ... 57
3.1.2 Propagation Scenarios of Wide-Sense Vehicle-to-X Communications .. 60
3.2 High-Speed Railway Channel Measurements .. 68
3.2.1 Measurement Methods and System .. 68
3.2.2 Measurement Campaign ... 71
3.3 Narrowband Channel Characterization of High-Speed Railways ... 75
3.3.1 Path Loss .. 75
3.3.2 Shadow Fading ... 78
3.3.3 Small-Scale Fading ... 86
3.4 Wideband Channel Characterization of High-Speed Railways ... 100
3.4.1 Delay Characteristics ... 100
3.4.2 Doppler Effect .. 104
3.4.3 Angular Characteristics ... 109
3.5 Summary .. 116

References .. 116

4 Cooperation and Cognition for Railway Communications .. 125
4.1 Cooperation Scenarios .. 125
4.1.1 Improved Channel Reliability .. 129
4.1.2 Improved System Throughput ... 130
4.1.3 Seamless Service Provision ... 133
4.2 Key Techniques for Cooperation .. 133
4.2.1 Relay Protocol .. 133
4.2.2 MIMO and Cooperative Communication .. 144
4.2.3 Distributed Space–Time Coding ... 147
4.2.4 Physical Layer Network Coding and Cooperative Communication 151
Signal Classification in Cognitive Radio

- 4.3.1 Spectrum Sensing .. 159
- 4.3.2 Automatic Modulation Classification 165
- 4.3.3 Specific Emitter Identification 172

Cooperation and Cognition for High-Speed Railway

- 4.4.1 Relay Selective Cooperation in Railway Network 178
- 4.4.2 A Cooperative Handover Scheme for High-Speed Railway 181
- 4.4.3 Cognition for High-Speed Railway 185

Summary

- 4.5.1 Cooperative Diversity in Wireless Sensor Networks 194
- 4.5.2 Cooperative Diversity in Cognitive Radio 194
- 4.5.3 Summary of Cognitive Radio 198

Resource Management for High-Speed Railway Mobile Communications

- 5.1 Introduction .. 205
- 5.2 Overview and Survey .. 207
 - 5.2.1 Admission Control .. 207
 - 5.2.2 Level-Based Admission Control 208
 - 5.2.3 Handover-Based Admission Control 209
 - 5.2.4 Priority-Based Admission Control 209
 - 5.2.5 Resource Allocation .. 210
 - 5.2.6 Interference-Aware Resource Allocation 211
 - 5.2.7 QoS-Aware Resource Allocation 212
 - 5.2.8 Cross-Layer Dynamic Resource Allocation 213
 - 5.2.9 Power Control .. 214
- 5.3 Resource Allocation and Power Control 216
 - 5.3.1 System Model .. 216
 - 5.3.2 Time-Distance Mapping 217
 - 5.3.3 BS-RS Link Capacity ... 218
 - 5.3.4 Utility-Based Resource Allocation 218
 - 5.3.5 Problem Formulation ... 219
 - 5.3.6 PAT Problem .. 220
 - 5.3.7 PAS Problem .. 221
 - 5.3.8 Problem Transformation 223
 - 5.3.9 The Greedy Algorithm .. 226
 - 5.3.10 Numerical Results and Discussions 228
- 5.4 Dynamic Resource Management .. 235
 - 5.4.1 System Model .. 235
 - 5.4.2 Problem Formulation ... 238
 - 5.4.3 Dynamic Resource Management Schemes 240
 - 5.4.4 Lyapunov Drift-Plus-Penalty Approach 241
 - 5.4.5 Dynamic Resource Management Algorithm 242
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.6</td>
<td>Dual Optimization Framework</td>
<td>245</td>
</tr>
<tr>
<td>5.4.7</td>
<td>Simulation Results</td>
<td>247</td>
</tr>
<tr>
<td>5.5</td>
<td>Challenges and Open Issues</td>
<td>251</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Location-Aware Resource Management</td>
<td>252</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Cross-Layer Based Resource Management</td>
<td>252</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Energy-Efficient Resource Management</td>
<td>253</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Robust Resource Management</td>
<td>253</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Resource Management for 5G Communications</td>
<td>254</td>
</tr>
<tr>
<td>5.6</td>
<td>Summary</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>255</td>
</tr>
<tr>
<td>6</td>
<td>LTE-R Network</td>
<td>259</td>
</tr>
<tr>
<td>6.1</td>
<td>LTE-R Network Services</td>
<td>259</td>
</tr>
<tr>
<td>6.2</td>
<td>LTE-R Network Architecture</td>
<td>262</td>
</tr>
<tr>
<td>6.3</td>
<td>LTE-R Network Performance Evaluation</td>
<td>265</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Queueing Theory</td>
<td>265</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Petri Nets</td>
<td>266</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Network Calculus</td>
<td>266</td>
</tr>
<tr>
<td>6.3.4</td>
<td>System Model</td>
<td>266</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Stochastic Arrival Curve for Train Control Service</td>
<td>277</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Stochastic Service Curve for HSR Fading Channel</td>
<td>278</td>
</tr>
<tr>
<td>6.3.7</td>
<td>Performance Evaluation</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>292</td>
</tr>
<tr>
<td>7</td>
<td>Security of Dedicated Mobile Communications for Railway</td>
<td>295</td>
</tr>
<tr>
<td>7.1</td>
<td>Security Threats of Mobile Communications for Railway</td>
<td>295</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Security Threats</td>
<td>295</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Security Issues in GSM-R</td>
<td>296</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Problems Still Existing in GSM-R</td>
<td>300</td>
</tr>
<tr>
<td>7.2</td>
<td>Security Enhancement for GSM-R</td>
<td>303</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Security Measures Taken by GSM-R System</td>
<td>303</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Bidirectional Authentication</td>
<td>307</td>
</tr>
<tr>
<td>7.2.3</td>
<td>End-to-End Encryption</td>
<td>310</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Anti SIM Card Clone</td>
<td>312</td>
</tr>
<tr>
<td>7.3</td>
<td>Security of Wireless Heterogeneous Networks for Railway</td>
<td>315</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Fast Re-authentication in Hot Spots</td>
<td>316</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Wlan and Cellular Authentication</td>
<td>323</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Relay Security</td>
<td>325</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Access Authentication for Mobile Trusted Computing</td>
<td>329</td>
</tr>
<tr>
<td>7.4</td>
<td>Future and Challenges</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>332</td>
</tr>
<tr>
<td>8</td>
<td>Channel Simulation Technologies for Railway Broadband Mobile Communication Systems</td>
<td>335</td>
</tr>
<tr>
<td>8.1</td>
<td>Simulation Approaches</td>
<td>335</td>
</tr>
<tr>
<td>8.2</td>
<td>Simulation Scenario for Railway</td>
<td>336</td>
</tr>
</tbody>
</table>
8.2.1 Scenario 1: Open Space SFN 336
8.2.2 Scenario 2: Tunnel Environment 337
8.2.3 Scenario 3: Open Space ENB to RP 338
8.2.4 Scenario 4: Public Network 338

8.3 Channel Model in Simulation 339
8.3.1 Single-Tap HST Channel Model 339
8.3.2 Two-Tap HST Channel Model 340
8.3.3 WINER Channel Model 342

8.4 Hardware-in-Loop Simulation Testbed 347
8.4.1 Architecture .. 347
8.4.2 HIL Simulation Results 348
Dedicated Mobile Communications for High-speed Railway
2018, IX, 350 p. 133 illus., 75 illus. in color., Hardcover